973 resultados para CAVITY QUANTUM ELECTRODYNAMICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general analysis of squeezing transformations for two-mode systems is given based on the four-dimensional real symplectic group Sp(4, R). Within the framework of the unitary (metaplectic) representation of this group, a distinction between compact photon-number-conserving and noncompact photon-number-nonconserving squeezing transformations is made. We exploit the U(2) invariant squeezing criterion to divide the set of all squeezing transformations into a two-parameter family of distinct equivalence classes with representative elements chosen for each class. Familiar two-mode squeezing transformations in the literature are recognized in our framework and seen to form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The need to extend the heterodyne detection scheme to encompass all of U(2) is emphasized, and known experimental situations where all U(2) elements can be reproduced are briefly described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the scientific challenges of growing InN quantum dots (QDs), using Molecular beam epitaxy (MBE), is to understand the fundamental processes that control the morphology and distribution of QDs. A systematic manipulation of the morphology, optical emission, and structural properties of InN/Si (111) QDs is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. Due to the large lattice mismatch, between InN and Si (similar to 8%), the dots formed from the Strannski-Krastanow (S-K) growth mode are dislocated. Despite the variations in strain (residual) and the shape, both the dot size and pair separation distribution show the scaling behavior. We observed that the distribution of dot sizes, for samples grown under varying conditions, follow the scaling function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the binding energy of a hydrogenic donor in a quantum well with potential shape proportional to \z\(2/3) as a function of the width of the quantum well and the barrier height under an applied uniform magnetic field along the a axis. As the well width decreases, the binding energy increases initially up to a critical well width (which is nearly the same for all magnetic fields) at which there is a turnover. The results are qualitatively similar to those of a hydrogenic donor in a rectangular well. We have also calculated [rho(2)](1/2) and [z(2)](1/2) for the donor electron. [rho(2)](1/2) is found to be strongly dependent on the magnetic field for a given well width and weakly dependent on the well width and the barrier height, for a given value of magnetic field [z(2)](1/2) is weakly dependent on the applied magnetic field. The probability of finding the donor electron inside the well shows a rapid decrease as the well width is reduced at nearly the well width at which the binding energy shows a maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A symmetric cascade of selective pulses applied on connected transitions leads to the excitation of a selected multiple-quantum coherence by a well-defined angle. This cascade selectively operates on the subspace of the multiple-quantum coherence and acts as a generator of rotation selectively on the multiple-quantum subspace. Single-transition operator algebra has been used to explain these experiments. Experiments have been performed on two- and three-spin systems. It is shown that such experiments can be utilized to measure the relaxation times of selected multiple-quantum coherences or of a specifically prepared initial longitudinal state of the spin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron transfer reactions in large molecules may often be coupled to both the polar solvent modes and the intramolecular vibrational modes of the molecule. This can give rise to a complex dynamics which may in some systems, like betaine, be controlled more by vibrational rather than by solvent effects. Additionally, a significant contribution from an ultrafast relaxation component in the solvation dynamics may enhance the complexity. To explain the wide range of behavior that has been observed experimentally, Barbara et al. recently proposed that a model of an electron transfer reaction should minimally consist of a low-frequency classical solvent mode (X), a low-frequency vibrational mode (Q), and a high-frequency quantum mode (q) (J. Phys. Chem. 1991, 96, 3728). In the present work, a theoretical study of this model is described. This study generalizes earlier work by including the biphasic solvent response and the dynamics of the low-frequency vibrational mode in the presence of a delocalized, extended reaction zone. A novel Green's function technique has been developed which allowed us to study the non-Markovian dynamics on a multidimensional surface. The contributions from the high-frequency vibrational mode and the ultrafast component in the non-Markovian solvent dynamics are found to be primarily responsible for the dramatic increase in charge transfer rate over the prediction of the classical theories that neglect both these factors. These, along with a large coupling between the reactant and the product states, may combine to render the electron transfer rate both very large and constant over a wide range of solvent relaxation rates. A study on the free energy gap dependence of the electron transfer rate reveals that the rates are sensitive to changes in the quantum frequency particularly when the free energy gap is very large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose to study the evolution of the quantum corrections to the conductivity in an oxide system as we approach the metal-insulator (M-I) transition from the metallic side. We report here the measurement of the low-temperature (0.1 K0.65), m takes on large values and ?(0)=0. We explain the temperature dependence of ?(T), for T<2 K, on the metallic side (x?0.4), as arising predominantly from electron-electron interactions, taking into account the diffusion-channel contribution (which gives m=0.5) as well as the Cooper-channel contribution. In this regime, the correction to conductivity, ??(T), is a small fraction of ?(T). However, as the M-I transition is approached (x?xc), ??(T) starts to dominate ?(T) and the above theories fail to explain the observed ?(T).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper reports the results of a theoretical study of the forces and factors driving the solubilization of n-alkane solubilizates into the micellar core of some non-ionic surfactants, based on a micellar model which includes the cavity forming free energy as a component of micellization. The solubilizate is n-decane and the non-ionic surfactants considered are n-decyl-polyoxyethylene surfactants. The extent of solubilization, i.e. the mole fraction of the solubilizate within the core has been calculated. The results indicate that the incorporated solubilizate has more translational and rotational degrees of freedom as compared to those of the tail parts of the surfactants present in the core. This drives the total free energy of aggregation after solubilization into a more favourable direction. The results are in fair agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple quantum-single quantum correlation experiments are employed for spectral simplification and determination of the relative signs of the couplings. In this study, we have demonstrated the excitation of three nuclei, triple quantum coherences and discussed the information obtainable from such experiments. The experiments have been carried out on doubly labeled acetonitrile and fluoroacetonitrile aligned in liquid crystalline media. The experiment is advantageous in providing many spectral parameters from a single experiment. The coherence pathways involved in the pulse sequence are described using product operators. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present photoluminescence and reflectance spectra of GaAs/Al-x Ga-1-x As quantum wells in a magnetic field for the Faraday geometry. The photoluminescence peaks recorded are among the most intense and narrow reported to date. This has allowed us to study the behavior of closely spaced bound exciton lines under a magnetic field. Several new features including magnetic field induced splitting of the bound exciton emission peaks are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quest for novel two-dimensional materials has led to the discovery of hybrids where graphene and hexagonal boron nitride (h-BN) occur as phase-separated domains. Using first-principles calculations, we study the energetics and electronic and magnetic properties of such hybrids in detail. The formation energy of quantum dot inclusions (consisting of n carbon atoms) varies as 1/root n, owing to the interface. The electronic gap between the occupied and unoccupied energy levels of quantum dots is also inversely proportional to the length scale, 1/root n-a feature of confined Dirac fermions. For zigzag nanoroads, a combination of the intrinsic electric field caused by the polarity of the h-BN matrix and spin polarization at the edges results in half-metallicity; a band gap opens up under the externally applied ``compensating'' electric field. For armchair nanoroads, the electron confinement opens the gap, different among three subfamilies due to different bond length relaxations at the interfaces, and decreasing with the width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symmetrized density-matrix renormalization-group approach is applied within the extended Hubbard-Peierls model (with parameters U/t, V/t, and bond alternation delta) to study the ordering of the lowest one-photon (1(1)B(u)(-)) and two-photon (2(1)A(g)(+)) states in one-dimensional conjugated systems with chain lengths N up to N = 80 sites. Three different types of crossovers are studied, as a function of U/t, delta, and N. The ''U crossover'' emphasizes the larger ionic character of the 2A(g) state compared to the lowest triplet excitation. The ''delta crossover'' shows strong dependence on both N and U/t. the ''N crossover'' illustrates the more localized nature of the 2A(g) excitation relative to the 1B(u) excitation at intermediate correlation strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental realization of various spin ladder systems has prompted their detailed theoretical investigations. Hen we study the evolution of ground-state magnetization with an external magnetic field for two different antiferromagnetic systems: a three-legged spin-1/2 ladder, and a two-legged spin-1/2 ladder with an additional diagonal interaction. The finite system density-matrix renormalization-group method is employed for numerical studies of the three-chain system, and an effective low-energy Hamiltonian is used in the limit of strong interchain coupling to study the two- and three-chain systems. The three-chain system has a magnetization plateau at one-third of the saturation magnetization. The two-chain system has a plateau at zero magnetization due to a gap above the singlet ground state. It also has a plateau at half of the saturation magnetization for a certain range of values of the couplings. We study the regions of transitions between plateaus numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model, We also study numerically some low-temperature properties of the three-chain system, such as the magnetization, magnetic susceptibility and specific heat. [S0163-1829(99)303001-5].