944 resultados para Budget autonomy
Resumo:
The research project on "Seniors in Society. Strategies to Retain Individual Autonomy" (2002 - 2004) is supported by the Grant Agency of the Czech Republic. It's importance is empha-sized by the relevance of social and economic aspects of demographic ageing of the popula-tion and that of fundamental changes associated with the transformation of Czech society. The objectives of the research are (1) to find out seniors' material and social resources sup-porting their relative autonomy in everyday life, (2) to record their personal expectations from state, community, or formal and informal support and aid institutions, respectively, and (3) to uncover their engagement in social interaction and individual experiencing of the integration into social groups. The data acquired become the base for (4) identifying the typologies corre-sponding to the levels of seniors' social integration (i.e. groups of relatives, friends, neighbours, special-interest and professional groups). By applying qualitative methods, we explore (5) strategies of everyday life and coping with life cycle events and crisis within par-ticular types. Special attention is paid to the family background of the seniors, including rela-tives in the vertical line. Specifically, we focus on (6) conditions under which family is capa-ble and willing to help or actually is helping it's oldest members, as well as on their interpre-tation within (7) identified types of the relatives supportive systems.
Resumo:
The seasonal dynamics of molybdenum (Mo) were studied in the water column of two tidal basins of the German Wadden Sea (Sylt-Rømø and Spiekeroog) between 2007 and 2011. In contrast to its conservative behaviour in the open ocean, both, losses of more than 50% of the usual concentration level of Mo in seawater and enrichments up to 20% were observed repeatedly in the water column of the study areas. During early summer, Mo removal by adsorption on algae-derived organic matter (e.g. after Phaeocystis blooms) is postulated to be a possible mechanism. Mo bound to organic aggregates is likely transferred to the surface sediment where microbial decomposition enriches Mo in the pore water. First δ98/95Mo data of the study area disclose residual Mo in the open water column being isotopically heavier than MOMo (Mean Ocean Molybdenum) during a negative Mo concentration anomaly, whereas suspended particulate matter shows distinctly lighter values. Based on field observations a Mo isotope enrichment factor of ε = −0.3‰ has been determined which was used to argue against sorption on metal oxide surfaces. It is suggested here that isotope fractionation is caused by biological activity and association to organic matter. Pelagic Mo concentration anomalies exceeding the theoretical salinity-based concentration level, on the other hand, cannot be explained by replenishment via North Sea waters alone and require a supply of excess Mo. Laboratory experiments with natural anoxic tidal flat sediments and modelled sediment displacement during storm events suggest fast and effective Mo release during the resuspension of anoxic sediments in oxic seawater as an important process for a recycling of sedimentary sulphide bound Mo into the water column.
Resumo:
Vorlanite (CaU6+)O4 Fm3̄m, a = 5.3647(9) Å, V = 154.40(4) Å3, Z = 2 was found in larnite pyrometamorphic rocks of the Hatrurim formation at the Jabel Harmun locality, Judean Desert, Palestinian Autonomy. Vorlanite crystals from these larnite rocks are dark-gray with greenish hue in transmitted light. This color in transmitted light is in contrast to dark-red vorlanite Fm3̄m, a = 5.3813(2) Å, V = 155.834(10)Å3, Z = 2 from the type locality Upper Chegem caldera, Northern Caucasus. Heating above 750 °C of dark-gray vorlanite from the Jabel Harmun, as well as dark-red vorlanite from Caucasus, led to formation of yellow trigonal uranate CaUO4. The unusual color of vorlanite from Jabel Harmun is assumed to be related to small impurities of tetravalent uranium.
Resumo:
Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.