650 resultados para Budding brass knuckles
Resumo:
Die grafische Darstellung des Verbundquerschnittes mit einer oberen Betonplatte und einem darunter liegenden Stahlträger war seit seiner Vorstellung in den 1950er Jahren ein Symbol, das weit über die Theorie hinausging und weite Verbreitung in der Praxis des Verbundbrückenbaus fand. Seit den 1970er bzw. 1980er Jahren hat dieses Bild – bedingt durch neue und freiere Formen, Beton und Stahl miteinander zu kombinieren – seine Symbolhaftigkeit verloren. In Deutschland und Spanien wurde der Doppelverbund mit unten liegenden Betonplatten in Bereichen mit negativen Momenten eingeführt, in Frankreich werden Stahlträger auch in vorgespannten Betonquerschnitten eingebettet. Beide Ansätze haben dazu beigetragen, dass in der Gegenwart die Materialien Stahl und Beton im Verbundbau frei miteinander kombiniert werden können. On the development of sections in composite bridges. A comprehensive theory of composite construction was established in Germany by Sattler in 1953. The theoretical image of the composite section with a superior concrete slab and a lower metallic structure was shaped in addition to the analytical resolution. Theory and graphical representation were going to be known together in Europe. This figure was repeated in all theoretical and academic publications, so becoming an authentic icon of the composite section. Its translation to the bridge deck in flexion was obvious: the superior slab defines the tread platform, while the metallic structure was left off-hook at the bottom. Nevertheless, in continuous decks the section is not optimal at all in zones of negative bending moments. But the overcoming of the graphical representation of the theory did not happen immediately. It was produced after a process in which several European countries played an active role and where different mechanisms of technological transference were developed. One approach to this overcoming is the “double composite action”, with a lower concrete slab in areas of a negative bending moment. The first accomplishments, a bridge in Orasje built in 1968 with 134 m span, as well as the publications of the system proposed by Fabrizio de Miranda in 1971 did not extend nor had continuity. Spanish bridges by Fernández Ordoñez and Martínez Calzón used double composite action for the first time in 1979. The German team of Leonhard, Andrä und partners, has used it since the end of the 1980's to solve bridges of great span. Once the technology has been well known thanks to the ASCE International Congress and the Spanish International Meetings organised by the “Colegio de Ingenieros de Caminos”, double composite action has been integrated well into the structural vocabulary everywhere. In France the approach was different. What Michel Virlogeux calls “double floor composite section” was reached as an evolution of prestressed concrete bridges. In an experimental process widely known, the external prestressing allows weight reduction by diminishing the thickness of the concrete webs. The following step, in the 1980's, was the substitution of the webs by metallic elements: stiffened plates, trusses or folded plates. A direct result of this development is the Brass de la Plaine Bridge in the Reunion Island in 2001 with 280 m span. Both approaches have contributed to a freedom of design in composite construction in steel and concrete today.
Resumo:
The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquitination of the S phase cyclin-dependent kinase inhibitor SIC1. SCF is composed of three proteins—ySKP1, CDC53 (Cullin), and the F-box protein CDC4—that are conserved from yeast to humans. As part of an effort to identify components and substrates of a putative human SCF complex, we isolated hSKP1 in a two-hybrid screen with hCUL1, the closest human homologue of CDC53. Here, we show that hCUL1 associates with hSKP1 in vivo and directly interacts with both hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-like particle. Moreover, hCUL1 complements the growth defect of yeast cdc53ts mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. Taken together, these data suggest that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. Further application of biochemical assays similar to those described here can now be used to identify regulators/components of hCUL1-based SCF complexes, to determine whether the hCUL2–hCUL5 proteins also are components of ubiquitin ligase complexes in human cells, and to screen for chemical compounds that modulate the activities of the hSKP1 and hCUL1 proteins.
Resumo:
Telomere length is maintained through a dynamic balance between addition and loss of the terminal telomeric DNA. Normal telomere length regulation requires telomerase as well as a telomeric protein–DNA complex. Previous work has provided evidence that in the budding yeasts Kluyveromyces lactis and Saccharomyces cerevisiae, the telomeric double-stranded DNA binding protein Rap1p negatively regulates telomere length, in part by nucleating, by its C-terminal tail, a higher-order DNA binding protein complex that presumably limits access of telomerase to the chromosome end. Here we show that in K. lactis, truncating the Rap1p C-terminal tail (Rap1p-ΔC mutant) accelerates telomeric repeat turnover in the distal region of the telomere. In addition, combining the rap1-ΔC mutation with a telomerase template mutation (ter1-kpn), which directs the addition of mutated telomeric DNA repeats to telomeres, synergistically caused an immediate loss of telomere length regulation. Capping of the unregulated telomeres of these double mutants with functionally wild-type repeats restored telomere length control. We propose that the rate of terminal telomere turnover is controlled by Rap1p specifically through its interactions with the most distal telomeric repeats.
Resumo:
Budding yeast cells divide asymmetrically, giving rise to a mother and its daughter. Mother cells have a limited division potential, called their lifespan, which ends in proliferation-arrest and lysis. In this report we mutate telomerase in Saccharomyces cerevisiae to shorten telomeres and show that, rather than shortening lifespan, this leads to a significant extension in lifespan. This extension requires the product of the SIR3 gene, an essential component of the silencing machinery which binds to telomeres. In contrast, longer telomeres in a genotypically wild-type strain lead to a decrease in lifespan. These findings suggest that the length of telomeres dictates the lifespan by regulating the amount of the silencing machinery available to nontelomeric locations in the yeast genome.
Resumo:
Budding and vesiculation of erythrocyte membranes occurs by a process involving an uncoupling of the membrane skeleton from the lipid bilayer. Vesicle formation provides an important means whereby protein sorting and trafficking can occur. To understand the mechanism of sorting at the molecular level, we have developed a micropipette technique to quantify the redistribution of fluorescently labeled erythrocyte membrane components during mechanically induced membrane deformation and vesiculation. Our previous studies indicated that the spectrin-based membrane skeleton deforms elastically, producing a constant density gradient during deformation. Our current studies showed that during vesiculation the skeleton did not fragment but rather retracted to the cell body, resulting in a vesicle completely depleted of skeleton. These local changes in skeletal density regulated the sorting of nonskeletal membrane components. Highly mobile membrane components, phosphatidylethanolamine- and glycosylphosphatidylinositol-linked CD59 with no specific skeletal association were enriched in the vesicle. In contrast, two components with known specific skeletal association, band 3 and glycophorin A, were differentially depleted in vesicles. Increasing the skeletal association of glycophorin A by liganding its extrafacial domain reduced the fraction partitioning to the vesicle. We conclude that this technique of bilayer/skeleton uncoupling provides a means with which to study protein sorting driven by changes in local skeletal density. Moreover, it is the interaction of particular membrane components with the spectrin-based skeleton that determines molecular partitioning during protein sorting.
Resumo:
Members of the polo subfamily of protein kinases play pivotal roles in cell-cycle control and proliferation. In addition to a high degree of sequence similarity in the kinase domain, polo kinases contain a strikingly conserved motif termed “polo-box” in the noncatalytic C-terminal domain. We have previously shown that the mammalian polo-like kinase Plk is a functional homolog of Saccharomyces cerevisiae Cdc5. Here, we show that, in a polo-box- and kinase activity-dependent manner, ectopic expression of Plk in budding yeast can induce a class of cells with abnormally elongated buds. In addition to localization at spindle poles and cytokinetic neck filaments, Plk induces and localizes to ectopic septin ring structures within the elongated buds. In contrast, mutations in the polo-box abolish both localization to, and induction of, septal structures. Consistent with the polo-box-dependent subcellular localization, the C-terminal domain of Plk, but not its polo-box mutant, is sufficient for subcellular localization. Our data suggest that Plk may contribute a signal to initiate or promote cytokinetic event(s) and that an intact polo-box is required for regulation of these cellular processes.
Resumo:
A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
Resumo:
In fission yeast both DNA polymerase alpha (pol α) and delta (pol δ) are required for DNA chromosomal replication. Here we demonstrate that Schizosaccharomyces pombe cdc20+ encodes the catalytic subunit of DNA polymerase epsilon (pol ɛ) and that this enzyme is also required for DNA replication. Following a shift to the restrictive temperature, cdc20 temperature-sensitive mutant cells block at the onset of DNA replication, suggesting that cdc20+ is required early in S phase very near to the initiation step. In the budding yeast Saccharomyces cerevisiae, it has been reported that in addition to its proposed role in chromosomal replication, DNA pol ɛ (encoded by POL2) also functions directly as an S phase checkpoint sensor [Navas, T. A., Zhou, Z. & Elledge, S. J. (1995) Cell 80, 29–39]. We have investigated whether cdc20+ is required for the checkpoint control operating in fission yeast, and our data indicate that pol ɛ does not have a role as a checkpoint sensor coordinating S phase with mitosis. In contrast, germinating spores disrupted for the gene encoding pol α rapidly enter mitosis in the absence of DNA synthesis, suggesting that in the absence of pol α, normal coordination between S phase and mitosis is lost. We propose that the checkpoint signal operating in S phase depends on assembly of the replication initiation complex, and that this signal is generated prior to the elongation stage of DNA synthesis.
Resumo:
Fission yeast Cdc18, a homologue of Cdc6 in budding yeast and metazoans, is periodically expressed during the S phase and required for activation of replication origins. Cdc18 overexpression induces DNA rereplication without mitosis, as does elimination of Cdc2-Cdc13 kinase during G2 phase. These findings suggest that illegitimate activation of origins may be prevented through inhibition of Cdc18 by Cdc2. Consistent with this hypothesis, we report that Cdc18 interacts with Cdc2 in association with Cdc13 and Cig2 B-type cyclins in vivo. Cdc18 is phosphorylated by the associated Cdc2 in vitro. Mutation of a single phosphorylation site, T104A, activates Cdc18 in the rereplication assay. The cdc18-K9 mutation is suppressed by a cig2 mutation, providing genetic evidence that Cdc2-Cig2 kinase inhibits Cdc18. Moreover, constitutive expression of Cig2 prevents rereplication in cells lacking Cdc13. These findings identify Cdc18 as a key target of Cdc2-Cdc13 and Cdc2-Cig2 kinases in the mechanism that limits chromosomal DNA replication to once per cell cycle.
Resumo:
SLA1 was identified previously in budding yeast in a genetic screen for mutations that caused a requirement for the actin-binding protein Abp1p and was shown to be required for normal cortical actin patch structure and organization. Here, we show that Sla1p, like Abp1p, localizes to cortical actin patches. Furthermore, Sla1p is required for the correct localization of Sla2p, an actin-binding protein with homology to talin implicated in endocytosis, and the Rho1p-GTPase, which is associated with the cell wall biosynthesis enzyme β-1,3-glucan synthase. Mislocalization of Rho1p in sla1 null cells is consistent with our observation that these cells possess aberrantly thick cell walls. Expression of mutant forms of Sla1p in which specific domains were deleted showed that the phenotypes associated with the full deletion are functionally separable. In particular, a region of Sla1p encompassing the third SH3 domain is important for growth at high temperatures, for the organization of cortical actin patches, and for nucleated actin assembly in a permeabilized yeast cell assay. The apparent redundancy between Sla1p and Abp1p resides in the C-terminal repeat region of Sla1p. A homologue of SLA1 was identified in Schizosaccharomyces pombe. Despite relatively low overall sequence homology, this gene was able to rescue the temperature sensitivity associated with a deletion of SLA1 in Saccharomyces cerevisiae.
Resumo:
The two highly conserved RAS genes of the budding yeast Saccharomyces cerevisiae are redundant for viability. Here we show that haploid invasive growth development depends on RAS2 but not RAS1. Ras1p is not sufficiently expressed to induce invasive growth. Ras2p activates invasive growth using either of two downstream signaling pathways, the filamentation MAPK (Cdc42p/Ste20p/MAPK) cascade or the cAMP-dependent protein kinase (Cyr1p/cAMP/PKA) pathway. This signal branch point can be uncoupled in cells expressing Ras2p mutant proteins that carry amino acid substitutions in the adenylyl cyclase interaction domain and therefore activate invasive growth solely dependent on the MAPK cascade. Both Ras2p-controlled signaling pathways stimulate expression of the filamentation response element-driven reporter gene depending on the transcription factors Ste12p and Tec1p, indicating a crosstalk between the MAPK and the cAMP signaling pathways in haploid cells during invasive growth.
Resumo:
Partitioning of the mammalian Golgi apparatus during cell division involves disassembly at M-phase. Despite the importance of the disassembly/reassembly pathway in Golgi biogenesis, it remains unclear whether mitotic Golgi breakdown in vivo proceeds by direct vesiculation or involves fusion with the endoplasmic reticulum (ER). To test whether mitotic Golgi is fused with the ER, we compared the distribution of ER and Golgi proteins in interphase and mitotic HeLa cells by immunofluorescence microscopy, velocity gradient fractionation, and density gradient fractionation. While mitotic ER appeared to be a fine reticulum excluded from the region containing the spindle-pole body, mitotic Golgi appeared to be dispersed small vesicles that penetrated the area containing spindle microtubules. After cell disruption, M-phase Golgi was recovered in two size classes. The major breakdown product, accounting for at least 75% of the Golgi, was a population of 60-nm vesicles that were completely separated from the ER using velocity gradient separation. The minor breakdown product was a larger, more heterogenously sized, membrane population. Double-label fluorescence analysis of these membranes indicated that this portion of mitotic Golgi also lacked detectable ER marker proteins. Therefore we conclude that the ER and Golgi remain distinct at M-phase in HeLa cells. To test whether the 60-nm vesicles might form from the ER at M-phase as the result of a two-step vesiculation pathway involving ER–Golgi fusion followed by Golgi vesicle budding, mitotic cells were generated with fused ER and Golgi by brefeldin A treatment. Upon brefeldin A removal, Golgi vesicles did not emerge from the ER. In contrast, the Golgi readily reformed from similarly treated interphase cells. We conclude that Golgi-derived vesicles remain distinct from the ER in mitotic HeLa cells, and that mitotic cells lack the capacity of interphase cells for Golgi reemergence from the ER. These experiments suggest that mitotic Golgi breakdown proceeds by direct vesiculation independent of the ER.
Resumo:
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Δ, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4–64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4–64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed.
Resumo:
Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.
Resumo:
The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5–10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is ∼150 nm. MTs growing from duplicated but not separated SPBs have a median length of ∼130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to ∼300 nm and then decreases to ∼30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells.