1000 resultados para Brain.
Resumo:
Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.
Resumo:
The growth-associated and presynaptic protein GAP-43 is important for axonal growth during brain development, for synaptic plasticity and in axonal regeneration [Benowitz, Routtenberg, TINS 12 (1987) 527]. It has been speculated that such growth may be mediated by cytoskeletal proteins. However, the interaction of GAP-43 with proteins of the presynaptic terminals is poorly characterized. Here, we analyze GAP-43 binding to cytoskeletal proteins by two different biochemical assays, by blot overlay and sedimentation. We find that immobilized brain spectrin (BS) is able to bind GAP-43. In contrast, little binding was observed to microtubule proteins and other elements of the cytoskeleton. Since GAP-43 is located presynaptically, it may bind to the presynaptic form of BS (SpIISigma1). It is attractive to think that such an interaction would participate in the structural plasticity observed in growth cones and adult synapses.
Resumo:
The production of extracellular soluble proteins was studied in serum-free aggregating cell cultures of fetal rat telencephalon labeled on culture day 7 with a mixture of radioactive amino acid precursors. Cultures treated continuously with epidermal growth factor (EGF; 20 ng/ml) showed a generally increased protein secretion and a particularly enhanced production of a few distinct extracellular proteins. The time lag of this response after an initial dose of EGF (25 ng/ml) on day 7 was 48 h. The total macromolecular radioactivity that accumulated within 96 h of labeling in the media of EGF-treated cultures was 175% of untreated controls, whereas no difference was found in the proportions of intracellular amino acid incorporation. Cultures which received a single dose of EGF (25 ng/ml) on day 1 showed still a greatly increased protein secretion on day 7. Prevention of extracellular protein accumulation by reducing the initial cell number and increasing the rate of media changes did not affect the EGF-induced stimulation of the two glial enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase. The results suggest that both the increased production of extracellular proteins and the enhanced development of glial enzymatic activities reflect the stimulated phenotypic expression of EGF-sensitive brain cells.
Resumo:
PURPOSE OF REVIEW: To present the practical aspects of transcranial Doppler (TCD) and provide evidence supporting its use for the management of traumatic brain injury (TBI) patients. RECENT FINDINGS: TCD measures systolic, mean, and diastolic cerebral blood flow (CBF) velocities and calculates the pulsatility index from basal intracranial arteries. These variables reflect the brain circulation, provided there is control of potential confounding factors. TCD can be useful in patients with severe TBI to detect low CBF, for example, during intracranial hypertension, and to assess cerebral autoregulation. In the emergency room, TCD might complement brain computed tomography (CT) scan and clinical examination to screen patients at risk for further neurological deterioration after mild-to-moderate TBI. SUMMARY: The diagnostic value of TCD should be incorporated into other findings from multimodal brain monitoring and CT scan to optimize the bedside management of patients with TBI and help guide the choice of appropriate therapies.
Resumo:
Brain natriuretic peptide (BNP) contributes to heart formation during embryogenesis. After birth, despite a high number of studies aimed at understanding by which mechanism(s) BNP reduces myocardial ischemic injury in animal models, the actual role of this peptide in the heart remains elusive. In this study, we asked whether BNP treatment could modulate the proliferation of endogenous cardiac progenitor cells (CPCs) and/or their differentiation into cardiomyocytes. CPCs expressed the NPR-A and NPR-B receptors in neonatal and adult hearts, suggesting their ability to respond to BNP stimulation. BNP injection into neonatal and adult unmanipulated mice increased the number of newly formed cardiomyocytes (neonatal: +23 %, p = 0.009 and adult: +68 %, p = 0.0005) and the number of proliferating CPCs (neonatal: +142 %, p = 0.002 and adult: +134 %, p = 0.04). In vitro, BNP stimulated CPC proliferation via NPR-A and CPC differentiation into cardiomyocytes via NPR-B. Finally, as BNP might be used as a therapeutic agent, we injected BNP into mice undergoing myocardial infarction. In pathological conditions, BNP treatment was cardioprotective by increasing heart contractility and reducing cardiac remodelling. At the cellular level, BNP stimulates CPC proliferation in the non-infarcted area of the infarcted hearts. In the infarcted area, BNP modulates the fate of the endogenous CPCs but also of the infiltrating CD45(+) cells. These results support for the first time a key role for BNP in controlling the progenitor cell proliferation and differentiation after birth. The administration of BNP might, therefore, be a useful component of therapeutic approaches aimed at inducing heart regeneration.
Resumo:
Le cerveau est l'organe avec les besoins en énergie les plus élevés du corps humain, et le glucose est un substrat énergétique cérébral essentiel. Ces dernières décennies, la compréhension de la neuroénergétique a beaucoup évolué et un rôle du lactate comme substrat énergétique important a été mis en évidence, notamment suite à l'introduction du modèle de l'ANLS (astrocyte-neuron lactate shuttle). Selon celui-ci, les astrocytes convertissent le glucose en lactate par réaction de glycolyse, puis il est transporté jusqu'aux neurones qui l'utilisent comme source d'énergie à travers le cycle de Krebs. Chez l'homme, divers travaux récents ont montré que le lactate peut servir de « carburant » cérébral chez le sujet sain, après effort intense ou chez le patient diabétique. La régulation métabolique et le rôle du lactate après lésion cérébrale aiguë sont encore peu connus. Présentation de l'article Le but de ce travail a été d'étudier le métabolisme cérébral du lactate chez les patients atteints de traumatisme crânien (TCC) sévère. Nous avons émis l'hypothèse que l'augmentation du lactate cérébral chez ces patients n'était pas associée de manière prédominante à une hypoxie ou une ischémie mais plutôt à une glycolyse aérobie, et également à une perfusion cérébrale normale. L'étude a porté sur une cohorte prospective de 24 patients avec TCC sévère admis au service de médecine intensive du CHUV (centre hospitalier universitaire vaudois), monitorés par un système combinant microdialyse cérébrale (outil permettant de mesurer divers métabolites cérébraux, tels que le lactate, le pyruvate et le glucose), mesure de la pression cérébrale en oxygène et de la pression intracrânienne. Cet outil nous a permis de déterminer si l'élévation du lactate était principalement associée à une glycolyse active ou plutôt à une hypoxie. L'utilisation du CTde perfusion a permis d'évaluer la relation entre les deux patterns d'élévation du lactate (glycolytique ou hypoxique) et la perfusion cérébrale globale. Nos résultats ont montré que l'augmentation du lactate cérébral chez les patients avec TCC sévère était associée de manière prédominante à une glycolyse aérobie plutôt qu'à une hypoxie/ischémie. D'autre part, nous avons pu confirmer que les épisodes de lactate glycolytique étaient toujours associés à une perfusion cérébrale normale ou augmentée, alors que les épisodes de lactate hypoxique étaient associés à une hypoperfusion cérébrale. Conclusions et perspectives Nos résultats, qui ont permis de mieux comprendre le métabolisme cérébral du lactate chez les patients avec TCC sévère, soutiennent le concept que le lactate est produit dans des conditions aérobes et pourrait donc être utilisé comme source d'énergie par le cerveau lésé pour subvenir à des besoins augmentas. Etant donné que la dysfonction énergétique est une des probables causes de perte neuronale après traumatisme crânien, ces résultats ouvrent des perspectives thérapeutiques nouvelles après agression cérébrale chez l'homme, visant à tester un potentiel effet neuroprotecteur via l'administration de lactate exogène.
Resumo:
The intravenous, short-acting general anesthetic propofol was applied to three-dimensional (aggregating) cell cultures of fetal rat telencephalon. Both the clinically used formulation (Disoprivan, ICI Pharmaceuticals, Cheshire, England) and the pure form (2,6-diisopropylphenol) were tested at two different periods of brain development: immature brain cell cultures prior to synaptogenesis and at the time of intense synapses and myelin formation. At both time periods and for clinically relevant concentrations and time of exposure (i.e., concentrations > or = 2.0 micrograms/ml for 8 hr), propofol caused a significant decrease of glutamic acid decarboxylase activity. This effect persisted after removal of the drug, suggesting irreversible structural changes in GABAergic neurons. The gamma-aminobutyric acid type A (GABAA) blocking agents bicuculline and picrotoxin partially attenuated the neurotoxic effect of propofol in cultures treated at the more mature phase of development. This protective effect was not observed in the immature brain cells. The present data suggest that propofol may cause irreversible lesions to GABAergic neurons when given at a critical phase of brain development. In contrast, glial cells and myelin appeared resistant even to high doses of propofol.
Resumo:
The earning structure in science is known to be flat relative to the one in the private sector, which could cause a brain drain toward the private sector. In this paper, we assume that agents value both money and fame and study the role of the institution of science in the allocation of talent between the science sector and the private sector. Following works on the Sociology of Science, we model the institution of science as a mechanism distributing fame (i.e. peer recognition). We show that since the intrinsic performance is less noisy signal of talent in the science sector than in the private sector, a good institution of science can mitigate the brain drain. We also find that providing extra monetary incentives through the market might undermine the incentives provided by the institution and thereby worsen the brain drain. Finally, we study the optimal balance between monetary and non-monetary incentives in science.
Resumo:
IntroductionSeveral studies have reported the presence of electroencephalography (EEG) abnormalities or altered evoked potentials (EPs) during sepsis. However, the role of these tests in the diagnosis and prognostic assessment of sepsis-associated encephalopathy remains unclear.MethodsWe performed a systematic search for studies evaluating EEG and/or EPs in adult (¿18 years) patients with sepsis-associated encephalopathy. The following outcomes were extracted: a) incidence of EEG/EP abnormalities; b) diagnosis of sepsis-associated delirium or encephalopathy with EEG/EP; c) outcome.ResultsAmong 1976 citations, 17 articles met the inclusion criteria. The incidence of EEG abnormalities during sepsis ranged from 12% to 100% for background abnormality and 6% to 12% for presence of triphasic waves. Two studies found that epileptiform discharges and electrographic seizures were more common in critically ill patients with than without sepsis. In one study, EEG background abnormalities were related to the presence and the severity of encephalopathy. Background slowing or suppression and the presence of triphasic waves were also associated with higher mortality. A few studies demonstrated that quantitative EEG analysis and EP could show significant differences in patients with sepsis compared to controls but their association with encephalopathy and outcome was not evaluated.ConclusionsAbnormalities in EEG and EPs are present in the majority of septic patients. There is some evidence to support EEG use in the detection and prognostication of sepsis-associated encephalopathy, but further clinical investigation is needed to confirm this suggestion.
Resumo:
PURPOSE OF REVIEW: Almost 15 years after its initial proposal, the astrocyte-neuron lactate shuttle hypothesis still occupies the center stage in research on brain energetics. Recent developments have provided further evidence for its validity and have extended its application to different areas of neuroscience. RECENT FINDINGS: Description of cell-specific metabolic characteristics have reinforced the view that a prominent conversion of glucose into lactate takes place in astrocytes, whereas neurons preferentially take up and oxidize lactate over glucose-derived pyruvate. Indeed, specific mechanisms are activated by glutamatergic activity to favor such a net lactate transfer between the two cell types. Moreover, demonstration in vivo of the existence and implication of the astrocyte-neuron lactate shuttle hypothesis for particular neurophysiological processes is beginning to appear. SUMMARY: Brain energetics has undertaken its revolution. A new concept based on metabolic compartmentalization between astrocytes and neurons is establishing itself as the leading paradigm that opens new perspectives in areas such as functional brain imaging and regulation of energy homeostasis.
Resumo:
BACKGROUND & AIM: Brain metastases are frequent in patients with metastatic melanoma, indicating poor prognosis. We investigated the BRAF kinase inhibitor vemurafenib in patients with advanced melanoma with symptomatic brain metastases. METHODS: This open-label trial assessed vemurafenib (960mg twice a day) in patients with BRAF(V600) mutation-positive metastatic melanoma with non-resectable, previously treated brain metastases. The primary end-point was safety. Secondary end-points included best overall response rate, and progression-free and overall survival. RESULTS: Twenty-four patients received vemurafenib for a median treatment duration of 3.8 (0.1-11.3) months. The majority of discontinuations were due to disease progression (n=22). Twenty-three of 24 patients reported at least one adverse event (AE). Grade 3 AEs were reported in four (17%; 95% confidence interval [CI], 4.7-37.4%) patients and included cutaneous squamous cell carcinoma in four patients. Median progression-free survival was 3.9 (95% CI, 3.0-5.5) months, and median survival was 5.3 (95% CI, 3.9-6.6) months. An overall partial response (PR) at both intracranial and extracranial sites was achieved in 10 of 24 (42%; 95% CI, 22.1-63.4) evaluable patients, with stable disease in nine (38%; 95% CI, 18.8-59.4) patients. Of 19 patients with measurable intracranial disease, seven (37%) achieved >30% intracranial tumour regression, and three (16%; 95% CI, 3.4-39.6%) achieved a confirmed PR. Other signs of improvement included reduced need for corticosteroids and enhanced performance status. CONCLUSIONS: Vemurafenib can be safely used in patients with advanced symptomatic melanoma that has metastasised to the brain and can result in meaningful tumour regression.
Resumo:
Craniopharyngiomas (CP) are benign epithelial tumors of the sellar region and can be clinicopathologically distinguished into adamantinomatous (adaCP) and papillary (papCP) variants. Both subtypes are classified according to the World Health Organization grade I, but their irregular digitate brain infiltration makes any complete surgical resection difficult to obtain. Herein, we characterized the cellular interface between the tumor and the surrounding brain tissue in 48 CP (41 adaCP and seven papCP) compared to non-neuroepithelial tumors, i.e., 12 cavernous hemangiomas, 10 meningiomas, and 14 metastases using antibodies directed against glial fibrillary acid protein (GFAP), vimentin, nestin, microtubule-associated protein 2 (MAP2) splice variants, and tenascin-C. We identified a specific cell population characterized by the coexpression of nestin, MAP2, and GFAP within the invasion niche of the adamantinomatous subtype. This was especially prominent along the finger-like protrusions. A similar population of presumably astroglial precursors was not visible in other lesions under study, which characterize them as distinct histopathological feature of adaCP. Furthermore, the outer tumor cell layer of adaCP showed a distinct expression of MAP2, a novel finding helpful in the differential diagnosis of epithelial tumors in the sellar region. Our data support the hypothesis that adaCP, unlike other non-neuroepithelial tumors of the central nervous system, create a tumor-specific cellular environment at the tumor-brain junction. Whether this facilitates the characteristic infiltrative growth pattern or is the consequence of an activated Wnt signaling pathway, detectable in 90% of these tumors, will need further consideration.