709 resultados para Bragg reflector
Resumo:
A 1.2 µm (height) × 125 µm (depth) × 500 µm (length) microslot along a fiber Bragg grating was engraved across the optical fiber by femtosecond laser patterning and chemical etching. By filling epoxy in the slot and subsequent UV curing, a hybrid waveguide grating structure with a polymer core and glass cladding was fabricated. The obtained device is highly thermally responsive with linear coefficient of 211 pm/°C.
Resumo:
We have designed and fabricated a new type of fibre Bragg grating (FBG) with a V-shaped dispersion profile for multi-channel dispersion compensation in communication links.
Resumo:
A report is made that the rate at which type IA fibre Bragg gratings may be inscribed is related to the intensity of the UV inscription laser and that these gratings may be written in only a few minutes. Also presented is the model of the refractive index of type IA gratings.
Resumo:
Two different architectures of multiplexers/demultiplexers based on 4×1 and 1×4 configurations are discussed. These architectures are implemented using apodized fibre Bragg gratings as optical filters and optical circulators. The spectral characteristics of the devices for channel separations of 100 GHz and 50 GHz are analysed and their performance is evaluated. Optical switch and cross-connect configurations are also demonstrated.
Resumo:
A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.
Resumo:
We propose a new type of fiber Bragg grating (FBG) with a V-shaped dispersion profile. We demonstrate that such V-shaped FBGs bring advantages in manipulation of optical signals compared to conventional FBGs with a constant dispersion, e.g., they can produce larger chirp for the same input pulsewidth and/or can be used as pulse shapers. Application of the proposed V-shaped FBGs for signal prechirping in fiber transmission is examined. The proposed design of the V-shaped FBG can be easily extended to embrace multichannel devices. © 2007 IEEE.
Resumo:
A transversal-load sensor based on the local pressure-induced refractive index change in a chirped fiber Bragg grating (CFBG) is proposed. The local pressure induced refractive index change in the touch point can generate a main transmission peak and several subpeaks on the long wavelength side of the reflection band of the CFBG. The difference of the wavelength shifts for the main transmission peak and the first subpeak is used to measure transversal-load with temperature compensation capability.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.
Resumo:
We report a novel demodulation scheme for the detection of small Bragg wavelength shifts in a fiber Bragg grating strain sensor by exploiting the optical feedback reflected from the grating structure back into a 1310 nm laser diode integrating a photodiode. The dynamic strain generated by a mechanical vibrator is applied transversely to the fiber Bragg grating and the desired longitudinal strain values inferred from the detected sawtooth-like optical feedback signals. Preliminary results demonstrate the feasibility of this demodulation technique for strain measurement which could be further extended to fiber Bragg grating-based sensors for the detection of different measurands in general.
Resumo:
The microchannelled chirped fibre Bragg grating (MCFBG) was fabricated using femtosecond laser processing and HF-etching. Intrinsical refractive-index sensitivity induced by the microchannel makes MCFBGs ideal for biochemical sensing.
Resumo:
Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.
Resumo:
Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.
Resumo:
We describe a demultiplexing scheme for fibre optic Bragg grating sensors in which signal recovery is achieved by locking each sensor grating to a corresponding receiver grating. As a demonstration, the technique is applied to strain and temperature sensing, achieving a resolution of 3.0 µe and 0.2°C, respectively.
Resumo:
A prototype fibre-optic system using interferometric wavelength-shift detection, capable of multiplexing up to 32 fibre-optic Bragg grating strain and temperature sensors with identical characteristics, has been demonstrated. This system is based on a spatially multiplexed scheme for use with fibre-based low-coherence interferometric sensors, reported previously. Four fibre-optic Bragg grating channels using the same fibre grating have been demonstrated for measuring quasi-static strain and temperature.