966 resultados para Body without Organs
Resumo:
[beta]-Hydroxy [beta]-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is one of the latest dietary supplements promoted to enhance gains in strength and lean body mass associated with resistance training. Unlike anabolic hormones that induce muscle hypertrophy by increasing muscle protein synthesis, HMB is claimed to influence strength and lean body mass by acting as an anticatabolic agent, minimising protein breakdown and damage to cells that may occur with intense exercise. Research on HMB has recently tested this hypothesis, under the assumption that it may be the active compound associated with the anticatabolic effects of leucine and its metabolites. While much of the available literature is preliminary in nature and not without methodological concern, there is support for the claims made regarding HMB supplementation, at least in young, previously untrained individuals. A mechanism by which this may occur is unknown, but research undertaken to date suggests there may be a reduction in skeletal muscle damage, although this has not been assessed directly. The response of resistance trained and older individuals to HMB administration is less clear. While the results of research conducted to date appear encouraging, caution must be taken when interpreting outcomes as most manuscripts are presented in abstract form only, not having to withstand the rigors of peer review. Of the literature reviewed relating to HMB administration during resistance training, only 2 papers are full manuscripts appearing in peer reviewed journals. The remaining 8 papers are published as abstracts only, making it difficult to critically review the research. There is clearly a need for more tightly controlled, longer duration studies to verify if HMB enhances strength and muscular hypertrophy development associated with resistance training across a range of groups, including resistance trained individuals.
Resumo:
Being able to compare the energy cost of physical activity across and between populations is important. However, energy expenditure is related to body size, so it is necessary to appropriately adjust for differences in body size when comparisons are made. This study examined the relationship between the daily energy cost of activity and body weight in 47 children aged 6-10 years. Log-log regression showed weight(1.0) to be an inappropriate adjustment for activity energy expenditure in children, with a more valid adjustment being weight(0.3). Clearly, both weight dependent and non-weight dependent activities are part of everyday living in children. This balance influences how energy expenditure is correctly adjusted for body size. Investigators interpreting data of energy expenditure in children from children of different body sizes need to take this into consideration.
Resumo:
Physical education, now often explicitly identified with health in contemporary school curricula, continues to be implicated in the (re)production of the 'cult of the body'. We argue that HPE is a form of health promotion that attempts to 'make' healthy citizens of young people in the context of the 'risk society'. In our view there is still work to be done in understanding how and why physical education (as HPE) continues to be implicated in the reproduction of values associated with the cult of body. We are keen to understand why HPE continues to be ineffective in helping young people gain some measure of analytic and embodied 'distance' from the problematic aspects of the cult of the body. This paper offers an analysis of this enduring issue by using some contemporary analytic discourses including 'governmentality', 'risk society' and the 'new public health'.
Resumo:
Background: Concerns of a decrease in physical activity levels (PALs) of children and a concurrent increase in childhood obesity exist worldwide. The exact relation between these two parameters however has as yet to be fully defined in children. Objective: This study examined the relation in 47 children, aged 5–10.5 y (mean age 8.4plusminus0.9 y) between habitual physical activity, minutes spent in moderate, vigorous and hard intensity activity and body composition parameters. Design: Total energy expenditure (TEE) was calculated using the doubly labelled water technique and basal metabolic rate (BMR) was predicted from Schofield's equations. PAL was determined by PAL=TEE/BMR. Time spent in moderate, vigorous and hard intensity activity was determined by accelerometry, using the Tritrac-R3D. Body fatness and body mass index (BMI) were used as the two measures of body composition. Results: Body fat and BMI were significantly inversely correlated with PAL (r=-0.43, P=0.002 and r=-0.45, P=0.001). Times spent in vigorous activity and hard activity were significantly correlated to percentage body fat (r=-0.44, P=0.004 and r=-0.39, P=0.014), but not BMI. Children who were in the top tertiles for both vigorous activity and hard activity had significantly lower body fat percentages than those in the middle and lowest tertiles. Moderate intensity activity was not correlated with measures of body composition. Conclusions: As well as showing a significant relation between PAL and body composition, these data intimate that there may be a threshold of intensity of physical activity that is influential on body fatness. In light of world trends showing increasing childhood obesity, this study supports the need to further investigate the importance of physical activity for children.
Resumo:
We present a fast method for finding optimal parameters for a low-resolution (threading) force field intended to distinguish correct from incorrect folds for a given protein sequence. In contrast to other methods, the parameterization uses information from >10(7) misfolded structures as well as a set of native sequence-structure pairs. In addition to testing the resulting force field's performance on the protein sequence threading problem, results are shown that characterize the number of parameters necessary for effective structure recognition.
Resumo:
Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water ((H2O)-H-3) dilution. The limits of agreement for the procedure were, however, large, approximately +/-25%, limiting the applicability of the technique for measurement of body composition in individual animals.
Resumo:
Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.
Resumo:
It is argued that the common classification of abrasive wear into 'two-body abrasion' and 'three-body abrasion' is seriously flawed. No definitions have been agreed upon for these terms, and indeed there are two quite different interpretations, the implications of which are mutually inconsistent. In the dominant interpretation, the primary thrust of the two-body/three-body concept is to describe whether the abrasive particles are constrained (two-body) or free to roll (three-body). In this view, two-body abrasion is generally much more severe than three-body. The alternative interpretation emphasises the presence (three-body) or absence (two-body) of a rigid counterface backing the abrasive. In this view, three-body abrasion is equated to high-stress (or grinding) abrasion and is generally more severe than two-body (low-stress) abrasion. This paper recommends that the 'two-body/three-body' terminology be abandoned, to be replaced by an alternative classification scheme based directly upon the manifest severity of wear. (C) 1998 Elsevier Science S.A.
Resumo:
Although Porphyromonas gingivalis is a defined pathogen in periodontal disease, many subjects control the infection without experiencing loss of attachment. Differences in host susceptibility to the disease may be reflected in the pattern of humoral antibodies against specific P. gingivalis antigens. The aim of this study was to determine the presence of antibodies against immunodominant P. gingivalis antigens as well as the isotype and subclass of anti-P. gingivalis antibodies against outer membrane antigens in four groups of patients: P. gingivalis-positive, 1) with and 2) without periodontitis, and P. gingivalis-negative, 3) with and 4) without periodontitis. Antigens of molecular weight 92, 63, and 32 kDa and lipopolysaccharide were found to be immunodominant. Group 1 subjects showed a significantly higher response to the 92 and 63 kDa antigens compared with other groups. The response to lipopolysaccharide was significantly higher in group 1, and lower in group 4 than in groups 2, 3. Immunoglobulin G(1) (IgG(1)), IgG(2) and IgM antibodies against P. gingivalis outer membrane were present in all subjects, while only some subjects were seropositive for IgG(3), IgG(4) and IgA. There were no differences in concentrations for IgG(1), IgG(3) and IgM. The IgG(2) concentration in group 4 was significantly higher than in groups 1 and 2, while the IgG(4) concentration in group 4 was significantly lower than in other groups. The frequency of seropositivity for IgG(4) and IgA was lowest in group 4, while IgG; seropositivity was almost exclusively seen in healthy patients iii groups 2, 4. These findings suggest that the presence of IgG(3) may reflect non-susceptibility to the disease, while lack of IgG(4) may be indicative of periodontal health and lack of infection.
Resumo:
Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The supersonic flow around a cylindrical body has been studied using two optical techniques. For both sets of measurements, the cylinder was mounted from the side of the tunnel, allowing investigation of the bow shock region as well as in the wake. A new technique, laser-enhanced ionization flow tagging, was used for streamwise velocity determinations behind the body. From these measurements, it was found that the downstream velocity outside the wake was (1.90 +/- 0.06) km/s, whereas inside the wake the velocity was about 0-500 m/s in the upstream direction. Planar laser induced fluorescence of nitric oxide was employed for temperature determinations. It was established that the freestream temperature was (2120 +/- 100) K, decreasing to around (1550 +/- 400) K in the wake.
Resumo:
Fluid shifts from intracellular to extracellular water (ICW to ECW) are a feature of sepsis, caused by increased vascular permeability and cell catabolism. Changes in ECW and total body water (TBW) were assessed in a prospective observational study of patients with bacteremia by a bedside technique, and its prognostic impact determined; In 78 hospital patients with fever, the resistance ratio (Rinf/RO) and estimated ECW/TBW ratio from multifrequency bioelectrical impedance analysis, and serum albumin concentration were measured. Rinf/RO and ECW/TBW ratios decreased from day 0 to 2 in patients with significant bacteremia (n = 31), but not in patients with doubtful or negative blood cultures (n = 22 and 25), Increased Rinf/RO at baseline, and further increase of ECW/TBW from day 0 to 2, were associated with lower rate of recovery after 1 week and with higher mortality. Baseline Rinf/RO above the median (0.75) had positive and negative predictive values of 0.31 and 0.95 for death. This prognostic effect was independent of underlying disease and blood culture result in a multivariate model. Hypoalbuminemia at baseline was predictive of outcome, but changes in albumin from day 0 to 2 were unrelated to blood culture results or outcome. In patients with bacteremia,fluid shifts from intracellular to extracellular,vater occur early are rapidly reversible by antibiotic treatment but are associated with adverse prognosis. Bioelectrical impedance deserves further study as a tool for bedside monitoring of patients with bacteremia.
Resumo:
GH-binding protein (GHBP) corresponds to the extracellular domain of the GH receptor (GHR) and has been shown to be closely related to body fat. This study aimed to examine the inter-relationship between GHBP, leptin and body fat, and to test the hypothesis that GHBP is modified by GH replacement in GH-deficient adults and predicts IGF-I response. Twenty adults, mean age 47 years (range 20-69) with proven GH deficiency were randomly allocated to either GH (up to 0.25 U/kg/week in daily doses) or placebo for 3 months before cross-over to the opposite treatment. Plasma GHBP and leptin were measured at baseline and 2, 4, 8 and 12 weeks after each treatment. Whole body composition was measured at baseline by dual-energy X-ray absorptiometry (DEXA). There was a strong correlation between baseline leptin and GHBP (r = 0.88, P < 0.0001) and between baseline GHBP and percentage body fat, (r = 0.83, P < 0.0001). Mean GHBP levels were higher on GH compared with placebo, 1.53 +/- 0.28 vs 1.41 +/- 0.25 nM, P = 0.049. There was no correlation between baseline IGF-I and GHBP (r = -0.049, P = 0.84), and GHBP did not predict IGF-I response to GH replacement. The close inter-relationship between GHBP, leptin and body fat suggests a possible role for GHBP in the regulation of body composition. GHBP is increased by GH replacement in GH-deficient adults, but does not predict biochemical response to GH replacement. (C) 1999 Churchill Livingstone.