938 resultados para Biological samples
Resumo:
A selection of MeO-BDE and BDE congeners were analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography. The analysis was performed using both low resolution and high resolution GC-MS. MeO-PBDE concentrations relative to total PBDE concentrations varied greatly between sampling periods and species. The highest MeO-PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, often exceeding the concentration of the most abundant PBDE, BDE-47. The lowest MeO-PBDE levels were found in fin whales and ringed seals. The main MeO-BDE congeners were 6-MeO-BDE47 and 2'-MeO-BDE68. A weak correlation only between BDE47 and its methoxylated analog 6-MeO-BDE47 was found and is indicative of a natural source for MeO-PBDEs.
Resumo:
The solvent-extractable organic fractions of sediment samples from six Ocean Drilling Program Leg 117 sites were investigated by gas chromatography and gas chromatography-mass spectrometry. Sediments deposited in the Indus Fan (Site 720) as well as Miocene sediments from the Owen Ridge (Sites 722 and 731) contain almost exclusively organic matter of terrigenous origin. The organic matter in sediments from the Oman Margin (Sites 723, 725, and 728) and in the Pliocene/Pleistocene sections from the Owen Ridge is mainly of a marine origin with variable admixtures of terrigenous material. In these latter samples strong variations of the lipid composition and distribution are noted. However, the interpretation of the relation to potential biological sources is hampered by a lack of information on the possible lipid composition of appropriate organisms.
Resumo:
Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.