949 resultados para Biofilm-associated genes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SCOPE: This study explores the relationship between aflatoxin and the insulin-like growth factor (IGF) axis and its potential effect on child growth.

METHODS AND RESULTS: One hundred and ninety-nine Kenyan schoolchildren were studied for aflatoxin-albumin adduct (AF-alb), IGF1 and IGF-binding protein-3 (IGFBP3) levels using ELISA. AF-alb was inversely associated with IGF1 and IGFBP3 (p < 0.05). Both IGF1 and IGFBP3 were significantly associated with child height and weight (p < 0.01). Children in the highest tertile of AF-alb exposure (>198.5 pg/mg) were shorter than children in the lowest tertile (<74.5 pg/mg), after adjusting for confounders (p = 0.043). Path analysis suggested that IGF1 levels explained ∼16% of the impact of aflatoxin exposure on child height (p = 0.052). To further investigate this putative mechanistic pathway, HHL-16 liver cells (where HHL-16 is human hepatocyte line 16 cells) were treated with aflatoxin B1 (0.5, 5 and 20 μg/mL for 24-48 h). IGF1 and IGFBP3 gene expression measured by quantitative PCR and protein in culture media showed a significant down-regulation of IGF genes and reduced IGF protein levels.

CONCLUSION: Aflatoxin treatment resulted in a significant decrease in IGF gene and protein expression in vitro. IGF protein levels were also lower in children with the highest levels of AFB-alb adducts. The data suggest that aflatoxin-induced changes in IGF protein levels could contribute to growth impairment where aflatoxin exposure is high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: The aim of this study was to assess the prevalence of acquired carbapenemase genes amongst carbapenem non-susceptible Pseudomonas aeruginosa isolates in Australian patients with cystic fibrosis (CF). Cross-sectional molecular surveillance for acquired carbapenemase genes was performed on CF P. aeruginosa isolates from two isolate banks comprising: (i) 662 carbapenem resistant P. aeruginosa isolates from 227 patients attending 10 geographically diverse Australian CF centres (2007-2009), and (ii) 519 P. aeruginosa isolates from a cohort of 173 adult patients attending one Queensland CF clinic in 2011. All 1189 P. aeruginosa isolates were tested by polymerase chain reaction (PCR) protocols targeting ten common carbapenemase genes, as well the Class 1 integron intI1 gene and the aadB aminoglycoside resistance gene. No carbapenemase genes were identified among all isolates tested. The intI1 and aadB genes were frequently detected and were significantly associated with the AUST-02 strain (OR 24.6, 95% CI 9.3-65.6; p < 0.0001) predominantly from Queensland patients. Despite the high prevalence of carbapenem resistance in P. aeruginosa in Australian patients with CF, no acquired carbapenemase genes were detected in the study, suggesting chromosomal mutations remain the key resistance mechanism in CF isolates. Systematic surveillance for carbapenemase-producing P. aeruginosa in CF by molecular surveillance is ongoing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:
Ovarian cancer is the fifth leading cause of cancer in women and has poor
long-term survival, in part, due to chemoresistance. Tumour hypoxia is associated with
chemoresistance in ovarian cancer. However, relatively little is known about the genes
activated in ovarian cancer which cause chemoresistance due to hypoxia. This study
aimed to firstly identify genes whose expression is associated with hypoxia-induced
chemoresistance, and secondly select hypoxia-associated biomarkers and evaluate their
expression in ovarian tumours.
Design:
Cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer
cell lines were exposed to combinations of hypoxia and/or cisplatin as part of a matrix
designed to reflect clinically relevant scenarios. RNA was extracted and interrogated
on Affymetrix Human Gene arrays. Differential gene expression was analysed for cells
exposed to hypoxia and/or treated with cisplatin. Potential markers of chemoresistance
were selected for evaluation in a cohort of ovarian tumour samples by R
T-PCR.
Results:
A wide range of genes associated with chemoresistance were differentially
expressed in cells exposed to hypoxia and/or cisplatin. Selected genes [ANGPTL4,
HER3 and HIF-1
α
] were chosen for further validation in a cohort of ovarian tumour
samples. High expression of ANGPTL4 trended towards reduced progression-free and
overall survival. High expression of HER3 trended to increased progression-free but
reduced overall survival, while high expression of HIF-1
α
trended towards reduced
progression-free and increased overall survival.
Conclusions:
In conclusion, this study has further characterized the relationship between
hypoxia and chemoresistance in an ovarian cancer model. We have also identified many
potential biomarkers of hypoxia and platinum resistance and provided initial validation
of a subset of these markers in ovarian cancer tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH) is associated with altered risk of invasive meningococcal disease (IMD). We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP) affected the risk association.

METHODS: We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.

RESULTS: Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10-4). There was no bacterial load (CtrA cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025).

DISCUSSION: The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias. 

Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture. 

Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria. 

Setting: Critical care departments within NHS hospitals in the north-west of England. 

Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation. 

Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard. 

Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy. 

Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rock/atmosphere interface is inhabited by a complex microbial community including bacteria, algae and fungi. These communities are prominent biodeterioration agents and remarkably influence the status of stone monuments and buildings. Deeper comprehension of natural biodeterioration processes on stone surfaces has brought about a concept of complex microbial communities referred to as "subaerial biofilms". The practical implications of biofilm formation are that control strategies must be devised both for testing the susceptibility of the organisms within the biofilm and treating the established biofilm. Model multi-species biofilms associated with mineral surfaces that are frequently refractory to conventional treatment have been used as test targets. A combination of scanning microscopy with image analysis was applied along with traditional cultivation methods and fluorescent activity stains. Such a polyphasic approach allowed a comprehensive quantitative evaluation of the biofilm status and development. Effective treatment strategies incorporating chemical and physical agents have been demonstrated to prevent biofilm growth in vitro. Model biofilm growth on inorganic support was significantly reduced by a combination of PDT and biocides

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To evaluate the association with diabetic kidney disease of single nucleotide polymorphisms (SNPs) that may contribute to mitochondrial dysfunction.

METHODS: The mitochondrial genome and 1039 nuclear genes that are integral to mitochondrial function were investigated using a case (n=823 individuals with diabetic kidney disease) vs. control (n=903 individuals with diabetes and no renal disease) approach. All people included in the analysis were of white European origin and were diagnosed with Type 1 diabetes before the age of 31 years. Replication was conducted in 5093 people with similar phenotypes to those of the discovery collection. Association analyses were performed using the plink genetic analysis toolset, with adjustment for relevant covariates.

RESULTS: A total of 25 SNPs were evaluated in the mitochondrial genome, but none were significantly associated with diabetic kidney disease or end-stage renal disease. A total of 38 SNPs in nuclear genes influencing mitochondrial function were nominally associated with diabetic kidney disease and 16 SNPS were associated with end-stage renal disease, secondary to diabetic kidney disease, with meta-analyses confirming the same direction of effect. Three independent signals (seven SNPs) were common to the replication data for both phenotypes with Type 1 diabetes and persistent proteinuria or end-stage renal disease.

CONCLUSIONS: Our results suggest that SNPs in nuclear genes that influence mitochondrial function are significantly associated with diabetic kidney disease in a white European population

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations.

METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls.

RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 × 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 × 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 × 10(-9)).

CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of persistent infection by NTHi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Exposure to environmental toxins during embryonic development may lead to epigenetic changes that influence disease risk in later life. Aflatoxin is a contaminant of staple foods in sub-Saharan Africa, is a known human liver carcinogen and has been associated with stunting in infants.

METHODS: We have measured aflatoxin exposure in 115 pregnant women in The Gambia and examined the DNA methylation status of white blood cells from their infants at 2-8 months old (mean 3.6 ± 0.9). Aflatoxin exposure in women was assessed using an ELISA method to measure aflatoxin albumin (AF-alb) adducts in plasma taken at 1-16 weeks of pregnancy. Genome-wide DNA methylation of infant white blood cells was measured using the Illumina Infinium HumanMethylation450beadchip.

RESULTS: AF-alb levels ranged from 3.9 to 458.4 pg/mg albumin. We found that aflatoxin exposure in the mothers was associated to DNA methylation in their infants for 71 CpG sites (false discovery rate < 0.05), with an average effect size of 1.7% change in methylation. Aflatoxin-associated differential methylation was observed in growth factor genes such as FGF12 and IGF1, and immune-related genes such as CCL28, TLR2 and TGFBI. Moreover, one aflatoxin-associated methylation region (corresponding to the miR-4520b locus) was identified.

CONCLUSIONS: This study shows that maternal exposure to aflatoxin during the early stages of pregnancy is associated with differential DNA methylation patterns of infants, including in genes related to growth and immune function. This reinforces the need for interventions to reduce aflatoxin exposure, especially during critical periods of fetal and infant development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.

Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-β) and Ran.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.