572 resultados para Bing Crosby
Resumo:
Mode of access: Internet.
Resumo:
Imprint varies.
Resumo:
Mode of access: Internet.
Resumo:
"Press of Stettiner, Lambert & Co., 129 & 131 Crosby St., New York."; vol. 2, pt. 2.
Resumo:
Vols.1-7 edited by J. Stevenson; v.8-11, by A. J. Crosby; v.12-17, by A. J. Butler (v.17 with S. C. Lomas); v.18-21, by S. C. Lomas (v.18, pt.2-4 with A. B. Hinds); v.22- by R. B. Wernham.
Resumo:
Vol. 2 has imprint: Boston, Crosby and Nichols; New York, O.S. Felt.
Resumo:
Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.
Resumo:
A new method for ameliorating high-field image distortion caused by radio frequency/tissue interaction is presented and modeled, The proposed method uses, but is not restricted to, a shielded four-element transceive phased array coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both images together, the image distortion can be reduced several-fold. A hybrid finite-difference time-domain/method-of-moments method is used to theoretically demonstrate the method and also to predict the radio frequency behavior inside the human head. in addition, the proposed method is used in conjunction with the GRAPPA reconstruction technique to enable rapid imaging. Simulation results reported herein for IIT (470 MHz) brain imaging applications demonstrate the feasibility of the concept where multiple acquisitions using parallel imaging elements with GRAPPA reconstruction results in improved image quality. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Context: The relationships among the different eating disorders that exist in the community are poorly understood, especially for residual disorders in which bingeing or purging occurs in the absence of other behaviors. Objective: To examine a community sample for the number of mutually exclusive weight and eating profiles. Design: Data regarding lifetime eating disorder symptoms and weight range were submitted to a latent profile analysis. Profiles were compared regarding personality, current eating and weight, retrospectively reported life events, and lifetime depressive psychopathology. Setting: Longitudinal study among female twins from the Australian Twin Registry in whom eating was assessed by a telephone interview. Participants: A community sample of 1002 twins (individuals) who had participated in earlier waves of data collection. Main Outcome Measures: Number and clinical character of latent profiles. Results: The best fit was a 5-profile solution with women who were (1) of normal weight with few lifetime eating disorders (4.3%), (2) overweight (10.6% had a lifetime eating disorder), (3) underweight and generally had no eating disorders except for 5.3% who had restricting anorexia nervosa, (4) of low to normal weight (89.0% had a lifetime eating disorder), and (5) obese (37.0% had a lifetime eating disorder). Each profile contained more than 1 type of lifetime eating disorder except for the third profile. Women in the first and third profiles had the best functioning, with women in the fourth and fifth profiles having similarly poorer functioning. The women in the fourth group had a symptom profile distinctive from the other 4 groups in terms of severity; they were also more likely to have had lifetime major depression and suicidality. Conclusion: Lifetime weight ranges and the severity of eating disorder symptoms affected clustering more than the type of eating disorder symptom.
Resumo:
Cellular delivery involving the transfer of various drugs and bio-active molecules (peptides, proteins and DNAs, etc.) through the cell membrane into cells has attracted increasing attention because of its importance in medicine and drug delivery. This topic has been extensively reviewed. The direct delivery of drugs and biomolecules, however, is generally inefficient and suffering from problems such as enzymic degradation of DNAs. Therefore, searching for efficient and safe transport vehicles (carriers) to delivery genes or drugs into cells has been challenging yet exciting area of research. In past decades, many carriers have been developed and investigated extensively which can be generally classified into four major groups: viral carriers, organic cationic compounds, recombinant protiens and inorganic nanoparticles. Many inorganic materials, such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide and layered double hydroxide (LDH), have been studied. Inorganic nanoparticles show low toxicity and promise for controlled delivery properties, thus presenting a new alternative to viral carriers and cationic carriers. Inorganic nanoparticles generally possess versatile properties suitable for cellular delivery, including wide availability, rich functionality, good biocompatibility, potential capability of targeted delivery (e.g. selectively destroying cancer cells but sparing normal tissues) and controlled release of carried drugs. This paper reviews the latest advances in inorganic nanoparticle applications as cellular delivery carriers and highlights some key issues in efficient cellular delivery using inorganic nanoparticles. Critical proper-ties of inorganic nanoparticles, surface functionalisation (modification), uptake of biomolecules, the driving forces for delivery, and release of biomolecules will be reviewed systematically. Selected examples of promising inorganic nanoparticle delivery systems, including gold, fullerences and carbon nanotubes, LDH and various oxide nanoparticles in particular their applications for gene delivery will be discussed. The fundamental understanding of properties of inorganic nanoparticles in relation to cellular delivery efficiency as the most paramount issue will be highlighted. (c) 2005 Elsevier Ltd. All rights reserved.