948 resultados para Bellingshausen Sea, small escarpment at shelf break
Resumo:
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0-2 cm) were 5-10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C-26-C-33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC(15) to nC(22) compounds. Long-chain (> C-20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (< C-20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk delta(CTOCTOC)-C-13. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.
Resumo:
Concentrations and carbon isotopic (C-14, C-13) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B. P. (before present), that is in general, 3700 to 9000 years older than the C-14 ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%. 80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.
Resumo:
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous, and lower in High Field Strength Elements (HFSE). These rocks are higher in Large Ion Lithophile Elements (LILE), thorium and uranium contents, positive lead anomalies, negative Nb-Ta anomalies, and enrichment in Light Rare Earth Elements (LREE). Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB), and rhyolites from the northern Okinawa Trough have the highest Pb-207/Pb-208 and Pb-208/Pb-204 ratios. The NECS shelf margin basalts have lower Sr-87/Sr-86 ratios, epsilon(Nd) and sigma O-18 than the northern Okinawa Trough silicic rocks. According to K-40-Ar-40 isotopic ages of basalts from the NECS shelf margin, rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma. The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere. The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough, and the formation of basaltic magmas closely relates to the thinning of continental crust. The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough, which could have been generated by the interaction of basaltic melt with an enriched crustal component. From the Ryukyu island arc to East China, the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE), suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate, and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.
Resumo:
A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 kin along the Chinese coast. This clinoform is thickest (similar to 40m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. Pb-210 chronologies show the highest accumulation rates (> 3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 degrees N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
AMS(14)C dating and analysis of grain size, major elements and clay minerals were applied to Core MZ01 from the mud area on the inner shelf of the East China Sea. Based on the environmentally sensitive grain size, clay mineral and major element assemblages, the history of the East Asia winter monsoon since the mid-Holocene could be reconstructed. These three proxies, mean grain size (>9.71 mu m), chemical index of alteration (CIA) and ratio of smectite to kaolinite in particular, show similar fluctuation patterns. Furthermore, 10 extreme values corresponding to the contemporary cooling events could be recognized since the mid-Holocene; these extreme values are likely to have been caused by the strengthening of the East Asia winter monsoon. The cooling events correlated well with the results of the delta O-18 curves of the Dunde ice core and GISP2, which therefore revealed a regional response to global climate change. Four stages of the East Asia winter monsoon were identified, i.e. 8300-6300 a BP, strong and unstable; 6300-3800 a BP, strong but stable; 3800-1400 a BP, weak and unstable; after 1400 a BP, weak but stable.
Resumo:
Ocean color and sea surface temperature data from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite are used to study the cross-shelf circulation and transport of suspended sediments in the Yellow and the East China Seas. The ocean color images show a significant turbid water plume extending in the southeast direction from the Subei coasts of China to the shelf edge south of Cheju during fall-winter, suggesting significant cross-shelf currents in the Yellow Sea/East China Sea in winter. The currents transport suspended sediments from the area of the old Huanghe mouth into the Okinawa Trough. Part of the turbid plume joins the Yellow Sea Warm Current to enter the Yellow Sea trough in winter. The satellite images suggest that the time scales of cross-shelf transport and surface-to-subsurface descending of the suspended sediments are a few weeks. The turbid plume grows in fall, reaches its maximum expansion and intensity in winter-spring, and subsides in late spring. In summer, the plume becomes coastally trapped. Substantial interannual variations of the intensity and coverage of the turbid plume are indicated by the observations. In comparison, the Changjiang Diluted Water in summer only transports a small amount of the Changjiang suspended sediment to the outer shelf south of Cheju, which does not enter the Yellow Sea owing to the weak intrusion of the Yellow Sea Warm Current in summer. The dynamics of the cross-shelf circulation in the Yellow Sea in winter are hypothesized to be associated with (1) the convergence of the Yellow Sea Coastal Current and the Taiwan Warm Current off the Changjiang mouth and (2) the time-dependent forcing of the northerly wind bursts that drives the intrusion of the Yellow Sea Warm Current. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Large amplitude internal solitary waves (ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean. We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea (19A degrees 35'N, 112A degrees E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors, and an acoustic Doppler current profiler (ADCP). We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories. Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width. Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries (KdV) theory than the first-order KdV model. These results indicate that the northwestern South China Sea (SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.
Resumo:
We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea (NSCS) with a one-way nesting technology for downscaling. The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS shelf. The vertical velocity was considerably enhanced in submesoscale processes and could reach an average of 58 m per day in the subsurface. At this point, the mixed layer depth also was deepened along the front, and the surface kinetic energy also increased with the intense vertical movement induced by submesoscale activity. Thus, submesoscale stirring/mixing is important for tracers, such as temperature, salinity, nutrients, dissolved organic, and inorganic carbon. This result may have implication for climate and biogeochemical investigations.
Resumo:
Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1-5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Understanding the role of marine mammals in specific ecosystems and their interactions with fisheries involves, inter alia, an understanding of their diet and dietary requirements. In this thesis, the foraging ecology of seven marine mammal species that regularly occur in Irish waters was investigated by reconstructing diet using hard parts from digestive tracts and scats. Of the species examined, two (striped and Atlantic white-sided dolphin) can be considered offshore species or species inhabiting neritic waters, while five others usually inhabit more coastal areas (white-beaked dolphin, harbour porpoise, harbour seal and grey seal); the last species studied was the bottlenose dolphin whose population structure is more complex, with coastal and offshore populations. A total of 13,028 prey items from at least 81 different species (62 fish species, 14 cephalopods, four crustaceans, and a tunicate) were identified. 28% of the fish species were identified using bones other than otoliths, highlighting the importance of using all identifiable structures to reconstruct diet. Individually, each species of marine mammal presented a high diversity of prey taxa, but the locally abundant Trisopterus spp. were found to be the most important prey item for all species, indicating that Trisopterus spp. is probably a key species in understanding the role of these predators in Irish waters. In the coastal marine mammals, other Gadiformes species (haddock, pollack, saithe, whiting) also contributed substantially to the diet; in contrast, in pelagic or less coastal marine mammals, prey was largely comprised of planktivorous fish, such as Atlantic mackerel, horse mackerel, blue whiting, and mesopelagic prey. Striped dolphins and Atlantic white-sided dolphins are offshore small cetaceans foraging in neritic waters. Differences between the diet of striped dolphins collected in drift nets targeting tuna and stranded on Irish coasts showed a complex foraging behaviour; the diet information shows that although this dolphin forages mainly in oceanic waters it may occasionally forage on the continental shelf, feeding on available prey. The Atlantic white-sided dolphin diet showed that this species prefers to feed over the continental edge, where planktivorous fish are abundant. Some resource partitioning was found in bottlenose dolphins in Irish waters consistent with previous genetic and stable isotope analysis studies. Bottlenose dolphins in Irish waters appears to be generalist feeders consuming more than 30 prey species, however most of the diet comprised a few locally abundant species, especially gadoid fish including haddock/pollack/saithe group and Trisopterus spp., but the contribution of Atlantic hake, conger eels and the pelagic planktivorous horse mackerel were also important. Stomach content information suggests that three different feeding behaviours might occur in bottlenose dolphin populations in Irish waters; firstly a coastal behaviour, with animals feeding on prey that mainly inhabit areas close to the coast; secondly an offshore behaviour where dolphins feed on offshore species such as squid or mesopelagic fish; and a third more complex behaviour that involves movements over the continental shelf and close to the shelf edge. The other three coastal marine mammal species (harbour porpoise, harbour seal and grey seal) were found to be feeding on similar prey and competition for food resources among these sympatric species might occur. Both species of seals were found to have a high overlap (more than 80%) in their diet composition, but while grey seals feed on large fish (>110mm), harbour seals feed mostly on smaller fish (<110mm), suggesting some spatial segregation in foraging. Harbour porpoises and grey seals are potentially competing for the same food resource but some differences in prey species were found and some habitat partitioning might occur. Direct interaction (by catch) between dolphins and fisheries was detected in all species. Most of the prey found in the stomach contents from both stranded and by catch dolphins were smaller sizes than those targeted by commercial fisheries. In fact, the total annual food consumption of the species studied was found to be very small (225,160 tonnes) in comparison to fishery landings for the same area (~2 million tonnes). However, marine mammal species might be indirectly interacting with fisheries, removing forage fish. Incorporating the dietary information obtained from the four coastal species, an ECOPATH food web model was established for the Irish Sea, based on data from 2004. Five trophic levels were found, with bottlenose dolphins and grey and harbour seals occurring at the highest trophic level. A comparison with a previous model based on 1973 data suggests that while the overall Irish Sea ecosystem appears to be “maturing”, some indices indicate that the 2004 fishery was less efficient and was targeting fish at higher trophic levels than in 1973, which is reflected in the mean trophic level of the catch. Depletion or substantial decrease of some of the Irish Sea fish stocks has resulted in a significant decline in landings in this area. The integration of diet information in mass-balance models to construct ecosystem food-webs will help to understand the trophic role of these apex predators within the ecosystem.
Resumo:
The North Sea ecosystem has recently undergone dramatic changes, observed as altered biomass of individual species spanning a range of life forms from algae to birds, with evidence for an approximate doubling in the abundance of both phytoplankton and benthos as part of a regime shift after 1987. Remarkably, these changes, in part recorded in the Phytoplankton Colour Index of the Continuous Plankton Recorder (CPR) survey, are notable as episodic shifts occurring in 1988/89 and 1998 imposed on a gradual decadal trend. These biological events are shown to be a response to coincident changes in oceanic input and water temperature. Geostrophic transports have been calculated from a hydrographic section across the Rockall Trough, and a time series of seasurface temperature derived from satellite observations. The 2 pulses of oceanic incursion into the North Sea in circa 1988 and 1998 coincided with strong northward advection of anomalously warm water at the edge of the continental shelf.