914 resultados para Being Human
Resumo:
We sought to determine the extent to which colour (and luminance) signals contribute towards the visuomotor localization of targets. To do so we exploited the movement-related illusory displacement a small stationary window undergoes when it has a continuously moving carrier grating behind it. We used drifting (1.0-4.2 Hz) red/green-modulated isoluminant gratings or yellow/black luminance-modulated gratings as carriers, each curtailed in space by a stationary, two-dimensional window. After each trial, the perceived location of the window was recorded with reference to an on-screen ruler (perceptual task) or the on-screen touch of a ballistic pointing movement made without visual feedback (visuomotor task). Our results showed that the perceptual displacement measures were similar for each stimulus type and weakly dependent on stimulus drift rate. However, while the visuomotor displacement measures were similar for each stimulus type at low drift rates (<4 Hz), they were significantly larger for luminance than colour stimuli at high drift rates (>4 Hz). We show that the latter cannot be attributed to differences in perceived speed between stimulus types. We assume, therefore, that our visuomotor localization judgements were more susceptible to the (carrier) motion of luminance patterns than colour patterns. We suggest that, far from being detrimental, this susceptibility may indicate the operation of mechanisms designed to counter the temporal asynchrony between perceptual experiences and the physical changes in the environment that give rise to them. We propose that perceptual localisation is equally supported by both colour and luminance signals but that visuomotor localisation is predominantly supported by luminance signals. We discuss the neural pathways that may be involved with visuomotor localization. © 2007 Springer-Verlag.
Resumo:
Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Background/Aims: Positron emission tomography has been applied to study cortical activation during human swallowing, but employs radio-isotopes precluding repeated experiments and has to be performed supine, making the task of swallowing difficult. Here we now describe Synthetic Aperture Magnetometry (SAM) as a novel method of localising and imaging the brain's neuronal activity from magnetoencephalographic (MEG) signals to study the cortical processing of human volitional swallowing in the more physiological prone position. Methods: In 3 healthy male volunteers (age 28–36), 151-channel whole cortex MEG (Omega-151, CTF Systems Inc.) was recorded whilst seated during the conditions of repeated volitional wet swallowing (5mls boluses at 0.2Hz) or rest. SAM analysis was then performed using varying spatial filters (5–60Hz) before co-registration with individual MRI brain images. Activation areas were then identified using standard sterotactic space neuro-anatomical maps. In one subject repeat studies were performed to confirm the initial study findings. Results: In all subjects, cortical activation maps for swallowing could be generated using SAM, the strongest activations being seen with 10–20Hz filter settings. The main cortical activations associated with swallowing were in: sensorimotor cortex (BA 3,4), insular cortex and lateral premotor cortex (BA 6,8). Of relevance, each cortical region displayed consistent inter-hemispheric asymmetry, to one or other hemisphere, this being different for each region and for each subject. Intra-subject comparisons of activation localisation and asymmetry showed impressive reproducibility. Conclusion: SAM analysis using MEG is an accurate, repeatable, and reproducible method for studying the brain processing of human swallowing in a more physiological manner and provides novel opportunities for future studies of the brain-gut axis in health and disease.
Resumo:
The immune system protects the human body against infectious and maligant disease. The concept of an immune system arose because of the observation that an attack of measles or mumps, two common childhood diseases, conferred an immunity on the individual, the immunity being specific to the disease. It was only much later that it was discovered that a system in the body conferred this immunity.
Resumo:
People readily perceive smooth luminance variations as being due to the shading produced by undulations of a 3-D surface (shape-from-shading). In doing so, the visual system must simultaneously estimate the shape of the surface and the nature of the illumination. Remarkably, shape-from-shading operates even when both these properties are unknown and neither can be estimated directly from the image. In such circumstances humans are thought to adopt a default illumination model. A widely held view is that the default illuminant is a point source located above the observer's head. However, some have argued instead that the default illuminant is a diffuse source. We now present evidence that humans may adopt a flexible illumination model that includes both diffuse and point source elements. Our model estimates a direction for the point source and then weights the contribution of this source according to a bias function. For most people the preferred illuminant direction is overhead with a strong diffuse component.
Resumo:
Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.
Resumo:
The immune system protects the human body against infectious and malignant disease. The concept of an immune system arose because of the observation that an attack of measles or mumps, two common childhood disease, conferred an immunity on the individual, the immunity being specific to the disease. It was only much later that it was discovered that a system in the body conferred this immunity. This article discusses the various components of the immune system, how they develop and their action in conferring immunity.
Resumo:
This thesis initially presents an 'assay' of the literature pertaining to individual differences in human-computer interaction. A series of experiments is then reported, designed to investigate the association between a variety of individual characteristics and various computer task and interface factors. Predictor variables included age, computer expertise, and psychometric tests of spatial visualisation, spatial memory, logical reasoning, associative memory, and verbal ability. These were studied in relation to a variety of computer-based tacks, including: (1) word processing and its component elements; (ii) the location of target words within passages of text; (iii) the navigation of networks and menus; (iv) command generation using menus and command line interfaces; (v) the search and selection of icons and text labels; (vi) information retrieval. A measure of self-report workload was also included in several of these experiments. The main experimental findings included: (i) an interaction between spatial ability and the manipulation of semantic but not spatial interface content; (ii) verbal ability being only predictive of certain task components of word processing; (iii) age differences in word processing and information retrieval speed but not accuracy; (iv) evidence of compensatory strategies being employed by older subjects; (v) evidence of performance strategy differences which disadvantaged high spatial subjects in conditions of low spatial information content; (vi) interactive effects of associative memory, expertise and command strategy; (vii) an association between logical reasoning and word processing but not information retrieval; (viii) an interaction between expertise and cognitive demand; and (ix) a stronger association between cognitive ability and novice performance than expert performance.
Resumo:
This research thesis is concerned with the human factors aspects of industrial alarm systems within human supervisory control tasks. Typically such systems are located in central control rooms, and the information may be presented via visual display units. The thesis develops a human, rather than engineering, centred approach to the assessment, measurement and analysis of the situation. A human factors methodology was employed to investigate the human requirements through: interviews, questionnaires, observation and controlled experiments. Based on the analysis of current industrial alarm systems in a variety of domains (power generation, manufacturing and coronary care), it is suggested that often designers do not pay due considerations to the human requirements. It is suggested that most alarm systems have severe shortcomings in human factors terms. The interviews, questionnaire and observations led to the proposal of 'alarm initiated activities' as a framework for the research to proceed. The framework comprises of six main stages: observe, accept, analyse, investigate, correct and monitor. This framework served as a basis for laboratory research into alarm media. Under consideration were speech-based alarm displays and visual alarm displays. Non-speech auditory displays were the subject of a literature review. The findings suggest that care needs to be taken when selecting the alarm media. Ideally it should be chosen to support the task requirements of the operator, rather than being arbitrarily assigned. It was also indicated that there may be some interference between the alarm initiated activities and the alarm media, i.e. information that supports one particular stage of alarm handling may interfere with another.
Resumo:
Attention defines our mental ability to select and respond to stimuli, internal or external, on the basis of behavioural goals in the presence of competing, behaviourally irrelevant, stimuli. The frontal and parietal cortices are generally agreed to be involved with attentional processing, in what is termed the 'fronto-parietal' network. The left parietal cortex has been seen as the site for temporal attentional processing, whereas the right parietal cortex has been seen as the site for spatial attentional processing. There is much debate about when the modulation of the primary visual cortex occurs, whether it is modulated in the feedforward sweep of processing or modulated by feedback projections from extrastriate and higher cortical areas. MEG and psychophysical measurements were used to look at spatially selective covert attention. Dual-task and cue-based paradigms were used. It was found that the posterior parietal cortex (PPC), in particular the SPL and IPL, was the main site of activation during these experiments, and that the left parietal lobe was activated more strongly than the right parietal lobe throughout. The levels of activation in both parietal and occipital areas were modulated in accordance with attentional demands. It is likely that spatially selective covert attention is dominated by the left parietal lobe, and that this takes the form of the proposed sensory-perceptual lateralization within the parietal lobes. Another form of lateralization is proposed, termed the motor-processing lateralization, the side of dominance being determined by handedness, being reversed in left- relative to right-handers. In terms of the modulation of the primary visual cortex, it was found that it is unlikely that V1 is modulated initially; rather the modulation takes the form of feedback from higher extrastriate and parietal areas. This fits with the idea of preattentive visual processing, a commonly accepted idea which, in itself, prevents the concept of initial modulation of V1.
Resumo:
Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is currently no effective cure. Consequently, developing new therapies and elucidating effective targets is crucial for this fatal disease. In recent years, DNA enzymes, deoxyribonucleic acid molecules with enzymatic activity, have emerged. In the same manner as ribozymes, DNA enzymes are able to effect cleavage of RNA in a sequence-specific manner, and operate with catalytic efficiency. In this study, two DNA enzymes were designed to target the template region of human telomerase RNA (hTR), utilising the 10-23 and 8-17 catalytic motifs elucidated by Santoro and Joyce (1997). Telomerase is an RNA-dependent DNA polymerase, which stabilises telomere lengths by adding hexameric repeats (TTAGGG in humans) to chromosome termini, thus preventing the telomere shortening that usually occurs during mitotic cell division. Telomerase activity, whilst absent in normal somatic tissues, is present in almost 90% of all tumours. Thus, there is speculation that telomerase may be the much sought universal target for therapeutic intervention in cancer. In vitro cleavage assays showed both DNA enzymes to be catalytically competent. Unmodified phosphodiester (PO) backbone DNA enzymes were rapidly degraded in the presence of serum, with a half-life of 10 minutes. The common approach of introducing phosphorothioate (PS) linkages was used in an effort to overcome this instability. As a result of concurrent activity and stability studies on the DNA enzymes with various numbers of PS linkages, the DNA enzymes with a PO core and PS arms were chosen for use in further cell work. The cleavage activity of both was shown to be specific and affected by temperature, pH, MgCI2 concentration and enzyme concentration. Both DNA enzyme motifs reduced telomerase activity in cell lysates, as assessed by the telomerase repeat amplification protocol (TRAP) with an IC50 of 100nM. DNA enzymes being polyanionic molecules do not readily cross biological barriers. Cellular association of naked DNA enzyme was inefficient at less than 2%. Cellular delivery of the DNA enzymes was effectively improved using commercial cationic lipid formulations. However, the lipid-mediated delivery of DNA enzymes to U87-MG cells over a 4-hour period did not significantly inhibit cell proliferation compared to controls. This is possibly due to an expected lag period between the inhibition of telomere maintenance and cell death. Therefore, biodegradable polymer microspheres were investigated as a potential delivery option for prolonged and sustained delivery. In vitro release profiles showed that after an initial burst, sustained release of DNA enzymes was observed over 35 days. Finally, the efficacy and specificity of the DNA enzymes were demonstrated in a luciferase based reporter assay. Specific inhibition of luciferase expression was displayed at 10nM. Thus DNA enzymes have potential against endogenous cellular targets.
Functional neuroimaging and behavioural studies on global form processing in the human visual system
Resumo:
Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.
Resumo:
Visual perception is dependent on both light transmission through the eye and neuronal conduction through the visual pathway. Advances in clinical diagnostics and treatment modalities over recent years have increased the opportunities to improve the optical path and retinal image quality. Higher order aberrations and retinal straylight are two major factors that influence light transmission through the eye and ultimately, visual outcome. Recent technological advancements have brought these important factors into the clinical domain, however the potential applications of these tools and considerations regarding interpretation of data are much underestimated. The purpose of this thesis was to validate and optimise wavefront analysers and a new clinical tool for the objective evaluation of intraocular scatter. The application of these methods in a clinical setting involving a range of conditions was also explored. The work was divided into two principal sections: 1. Wavefront Aberrometry: optimisation, validation and clinical application The main findings of this work were: • Observer manipulation of the aberrometer increases variability by a factor of 3. • Ocular misalignment can profoundly affect reliability, notably for off-axis aberrations. • Aberrations measured with wavefront analysers using different principles are not interchangeable, with poor relationships and significant differences between values. • Instrument myopia of around 0.30D is induced when performing wavefront analysis in non-cyclopleged eyes; values can be as high as 3D, being higher as the baseline level of myopia decreases. Associated accommodation changes may result in relevant changes to the aberration profile, particularly with respect to spherical aberration. • Young adult healthy Caucasian eyes have significantly more spherical aberration than Asian eyes when matched for age, gender, axial length and refractive error. Axial length is significantly correlated with most components of the aberration profile. 2. Intraocular light scatter: Evaluation of subjective measures and validation and application of a new objective method utilising clinically derived wavefront patterns. The main findings of this work were: • Subjective measures of clinical straylight are highly repeatable. Three measurements are suggested as the optimum number for increased reliability. • Significant differences in straylight values were found for contact lenses designed for contrast enhancement compared to clear lenses of the same design and material specifications. Specifically, grey/green tints induced significantly higher values of retinal straylight. • Wavefront patterns from a commercial Hartmann-Shack device can be used to obtain objective measures of scatter and are well correlated with subjective straylight values. • Perceived retinal stray light was similar in groups of patients implanted with monofocal and multi focal intraocular lenses. Correlation between objective and subjective measurements of scatter is poor, possibly due to different illumination conditions between the testing procedures, or a neural component which may alter with age. Careful acquisition results in highly reproducible in vivo measures of higher order aberrations; however, data from different devices are not interchangeable which brings the accuracy of measurement into question. Objective measures of intraocular straylight can be derived from clinical aberrometry and may be of great diagnostic and management importance in the future.
Resumo:
Purpose - Anterior segment optical coherent tomography (AS-OCT) is used to further examine previous reports that ciliary muscle thickness (CMT) is increased in myopic eyes. With reference to temporal and nasal CMT, interrelationships between biometric and morphological characteristics of anterior and posterior segments are analysed for British-White and British-South-Asian adults with and without myopia. Methods - Data are presented for the right eyes of 62 subjects (British-White n = 39, British-South-Asian n = 23, aged 18–40 years) with a range of refractive error (mean spherical error (MSE (D)) -1.74 ± 3.26; range -10.06 to +4.38) and separated into myopes (MSE (D) <-0.50, range -10.06 to -0.56; n = 30) and non-myopes (MSE (D) =-0.50, -0.50 to +4.38; n = 32). Temporal and nasal ciliary muscle cross-sections were imaged using a Visante AS-OCT. Using Visante software, manual measures of nasal and temporal CMT (NCMT and TCMT respectively) were taken in successive posterior 1 mm steps from the scleral spur over a 3 mm distance (designated NCMT1, TCMT1 et seq). Measures of axial length and anterior chamber depth were taken with an IOLMaster biometer. MSE and corneal curvature (CC) measurements were taken with a Shin-Nippon auto-refractor. Magnetic resonance imaging was used to determine total ocular volume (OV) for 31 of the original subject group. Statistical comparisons and analyses were made using mixed repeated measures anovas, Pearson's correlation coefficient and stepwise forward multiple linear regression. Results - MSE was significantly associated with CMT, with thicker CMT2 and CMT3 being found in the myopic eyes (p = 0.002). In non-myopic eyes TCMT1, TCMT2, NCMT1 and NCMT2 correlated significantly with MSE, AL and OV (p < 0.05). In contrast, myopic eyes failed generally to exhibit a significant correlation between CMT, MSE and axial length but notably retained a significant correlation between OV, TCMT2, TCMT3, NCMT2 and NCMT3 (p < 0.05). OV was found to be a significantly better predictor of TCMT2 and TCMT3 than AL by approximately a factor of two (p < 0.001). Anterior chamber depth was significantly associated with both temporal and nasal CMT2 and CMT3; TCMT1 correlated positively with CC. Ethnicity had no significant effect on differences in CMT. Conclusions - Increased CMT is associated with myopia. We speculate that the lack of correlation in myopic subjects between CMT and axial length, but not between CMT and OV, is evidence that disrupted feedback between the fovea and ciliary apparatus occurs in myopia development.
Resumo:
This research describes a computerized model of human classification which has been constructed to represent the process by which assessments are made for psychodynamic psychotherapy. The model assigns membership grades (MGs) to clients so that the most suitable ones have high values in the therapy category. Categories consist of a hierarchy of components, one of which, ego strength, is analysed in detail to demonstrate the way it has captured the psychotherapist's knowledge. The bottom of the hierarchy represents the measurable factors being assessed during an interview. A questionnaire was created to gather the identified information and was completed by the psychotherapist after each assessment. The results were fed into the computerized model, demonstrating a high correlation between the model MGs and the suitability ratings of the psychotherapist (r = .825 for 24 clients). The model has successfully identified the relevant data involved in assessment and simulated the decision-making process of the expert. Its cognitive validity enables decisions to be explained, which means that it has potential for therapist training and also for enhancing the referral process, with benefits in cost effectiveness as well as in the reduction of trauma to clients. An adapted version measuring client improvement would give quantitative evidence for the benefit of therapy, thereby supporting auditing and accountability. © 1997 The British Psychological Society.