997 resultados para Behavioral states
Resumo:
Phillips curves are often estimated without due attention being paid to the underlying time series properties of the data. In particular, the consequences of inflation having discrete breaks in mean have not been studied adequately. We show by means of simulations and a detailed empirical example based on United States data that not taking account of breaks may lead to biased, and therefore spurious, estimates of Phillips curves. We suggest a method to account for the breaks in mean inflation and obtain meaningful and unbiased estimates of the short- and long-run Phillips curves in the United States.
Resumo:
OBJECTIVE: The origins of behavioral and psychological symptoms (BPS) in Alzheimer's disease (AD) are still poorly understood. Focusing on individual personality structure, we explored the relationship between premorbid personality and its changes over 5 years, and BPS in patients at an early stage of AD. METHOD: A total of 54 patients at an early stage of AD according to ICD-10 and NINCDS-ADRDA criteria and 64 control subjects were included. Family members filled in the Neuropsychiatric Inventory Questionnaire to evaluate their proxies' current BPS and the NEO Personality Inventory Revised twice, the first time to evaluate the participants' current personality and the second time to assess personality traits as they were remembered to be 5 years earlier. RESULTS: Behavioral and psychological symptoms, in particular apathy, depression, anxiety, and agitation, are frequent occurrences in early stage AD. Premorbid personality differed between AD patients and normal control, but it was not predictive of BPS in patients with AD. Personality traits clearly change in the course of beginning AD, and this change seems to develop in parallel with BPS as early signs of AD. CONCLUSIONS: Premorbid personality was not associated with BPS in early stage of AD, although complex and non-linear relationships between the two are not excluded. However, both personality and behavioral changes occur early in the course of AD, and recognizing them as possible, early warning signs of neurodegeneration may prove to be a key factor for early detection and intervention. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
AIM: In normal aging, subjective cognitive decline (SCD) might reflect personality traits or affective states rather than objective cognitive decline. However, little is known on the correlates of SCD in mild cognitive impairment (MCI). The present study investigates SCD in MCI patients and healthy older adults, and explores the association of SCD with personality traits, affective states, behavioral and psychological symptoms (BPS), and episodic memory in patients with MCI as compared with healthy older adults. METHODS: A total of 55 patients with MCI and 84 healthy older adults were recruited. Standard instruments were used to evaluate SCD, episodic memory, BPS and affective states. Premorbid and current personality traits were assessed by proxies using the NEO Personality Inventory Revised. RESULTS: Patients with MCI generally reported SCD more often than healthy older adults. SCD was positively associated with depressive symptoms in both groups. With regard to personality, no significant relationship was found in the healthy older group, whereas agreeableness was significantly negatively related to SCD in the MCI group. No significant association was found between SCD and episodic memory. CONCLUSIONS: SCD is more prevalent in patients with MCI than in the healthy elderly, but it does not reflect an objective cognitive impairment. SCD rather echoes depressive symptoms in both patients with MCI and healthy subjects. The negative association of SCD with agreeableness observed in patients with MCI could indicate that MCI patients scoring high on the agreeableness trait would not report SCD in order to prevent their relatives worrying about their increasing cognitive difficulties.
Resumo:
A new species of digenean, Microphallus fonti, is described from the red swamp crawfish in Lousiania, U.S.A. It has a small pharynx and a rudimentary gut like M. opacus and a possibly related species from crayfishes, but it differs from them by its relatively large male copulatory papilla and a conspicuous metraterm.
Resumo:
Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background théoriqueDes stimuli multisensoriels sont plus faciles à reconnaître, peuvent améliorer l'apprentissage et sont traités plus rapidement comparé à des stimuli unisensoriels. Ainsi, la capacité qu'un organisme possède à extraire et à synthétiser avec ses différentes modalités sensorielles des inputs sensoriels pertinents, façonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient à extraire et à fusionner des stimuli pour créer une représentation percep- tuelle cohérente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appelée "intégration multisensorielle", une notion qui provient de travaux effectués dans le colliculus supérieur chez l'animal, une structure sous-corticale possédant des neurones produisant une sortie multisensorielle différant de la somme des entrées unisensorielles. Traditionnellement, l'intégration d'informations multisen- sorielles au niveau cortical est considérée comme se produisant tardivement dans les aires associatives supérieures dans les lobes frontaux, temporaux et pariétaux, suite à un traitement extensif au sein de régions unisensorielles primaires. Cependant, plusieurs découvertes anatomiques, électrophysiologiques et de neuroimageries remettent en question ce postulat, suggérant l'existence d'une convergence et d'interactions multisensorielles précoces.Les travaux présentés dans cette thèse sont destinés à mieux comprendre les bases neuronales et les mécanismes impliqués dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linéaires précoces audio-somatosensorielles ont été observées à maintes reprises chez l'homme et le singe dans des circonstances aussi variées que sous anes- thésie, avec stimulation passive, et lors de tâches nécessitant un comportement (une détection simple de stimuli, par exemple). Ainsi, le rôle fonctionnel joué par ces interactions à une étape du traitement de l'information si précoce demeure une question ouverte. Il a également été démontré que les temps de réaction en réponse à des stimuli audio-somatosensoriels sont facilités par rapport à leurs homologues unisensoriels indépendamment de leur position spatiale. Ce résultat suggère que l'intégration audio- somatosensorielle se produit dans des régions cérébrales possédant des représentations spatiales à large échelle. Cependant, des expériences qui ont exigé un traitement spatial des stimuli ont produits des effets limités à des conditions où les stimuli multisensoriels étaient, alignés dans l'espace ou encore comme pouvant varier selon la partie de corps stimulée. Il n'a pas été établi à ce jour si ces divergences pourraient être dues aux contraintes liées à la tâche et/ou à la nécessité d'un traitement de l'information spatiale.Hypothèse et résultats expérimentauxDans une première étude, nous avons émis l'hypothèse que les interactions audio- somatosensorielles précoces sont pertinentes pour le comportement. En effectuant un partage des temps de réaction par rapport à la médiane d'un sous-ensemble de données comportementales et électroencépha- lographiques, nous avons constaté que les interactions multisensorielles qui se produisent à des latences précoces (entre 40-83ms) sont spécifique aux temps de réaction rapides indiquant une corrélation directe entre ces interactions neuronales précoces et le comportement.Dans une deuxième étude, nous avons émis l'hypothèse que si l'information spatiale devient perti-nente pour la tâche, elle pourrait exercer une influence sur des mesures comportementales de l'intégration audio-somatosensorielles. Dans deux expériences psychophysiques, nous montrons que même si les participants prêtent attention à l'information spatiale, une facilitation de la détection se produit et ce toujours indépendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifiée à l'aide d'un index de sensibilité (d') est altérée suite aux essais multisensoriels en général et de manière plus significative pour les essais multisensoriels non-alignés dans l'espace.Dans une troisième étude, nous avons émis l'hypothèse que des améliorations comportementales pourraient différer selon la partie du corps qui est stimulée (la main vs. la nuque). Des résultats préliminaires suggèrent une dissociation possible entre une facilitation comportementale et les potentiels évoqués. Les temps de réactions étaient influencés par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels étaient sur la nuque alors que les potentiels évoqués étaient modulés par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thèse apporte des éléments nouveaux concernant le rôle fonctionnel joué par les interactions multisensorielles précoces de bas niveau. En combinant la psychophysique et la neuroimagerie électrique, nous démontrons la pertinence comportementale des ces interactions dans le système humain normal. Par ailleurs, nous montrons que ces interactions précoces sont hermétiques aux influences dites «top-down» sur le traitement spatial suggérant leur occurrence dans des régions cérébrales ayant accès à des représentations spatiales de grande échelle. Nous soulignons enfin des interactions spécifiques entre l'espace auditif et la stimulation somatosensorielle sur différentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mécanismes impliqués dans l'intégration multisensorielle dans le système normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau déficient pourrait bénéficier d'une réhabilitation avec la stimulation multisensorielle.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper is the first to use a randomized trial in the US to analyze the short- and long-term educational and employment impacts of an afterschool program that offered disadvantaged high-school youth: mentoring, educational services, and financial rewards with the objective to improve high-school graduation and postsecondary schooling enrollment. The short-term hefty beneficial average impacts quickly faded away. Heterogeneity matters. While encouraging results are found for younger youth, and when the program is implemented in relatively small communities of 9th graders; detrimental longlived outcomes are found for males, and when case managers are partially compensated by incentive payments and students receive more regular reminders of incentives.
Resumo:
ABSTRACT: BACKGROUND: Cardiovascular magnetic resonance (CMR) has favorable characteristics for diagnostic evaluation and risk stratification of patients with known or suspected CAD. CMR utilization in CAD detection is growing fast. However, data on its cost-effectiveness are scarce. The goal of this study is to compare the costs of two strategies for detection of significant coronary artery stenoses in patients with suspected coronary artery disease (CAD): 1) Performing CMR first to assess myocardial ischemia and/or infarct scar before referring positive patients (defined as presence of ischemia and/or infarct scar to coronary angiography (CXA) versus 2) a hypothetical CXA performed in all patients as a single test to detect CAD. METHODS: A subgroup of the European CMR pilot registry was used including 2,717 consecutive patients who underwent stress-CMR. From these patients, 21% were positive for CAD (ischemia and/or infarct scar), 73% negative, and 6% uncertain and underwent additional testing. The diagnostic costs were evaluated using invoicing costs of each test performed. Costs analysis was performed from a health care payer perspective in German, United Kingdom, Swiss, and United States health care settings. RESULTS: In the public sectors of the German, United Kingdom, and Swiss health care systems, cost savings from the CMR-driven strategy were 50%, 25% and 23%, respectively, versus outpatient CXA. If CXA was carried out as an inpatient procedure, cost savings were 46%, 50% and 48%, respectively. In the United States context, cost savings were 51% when compared with inpatient CXA, but higher for CMR by 8% versus outpatient CXA. CONCLUSION: This analysis suggests that from an economic perspective, the use of CMR should be encouraged as a management option for patients with suspected CAD.
Resumo:
BACKGROUND: Modern theories define chronic pain as a multidimensional experience - the result of complex interplay between physiological and psychological factors with significant impact on patients' physical, emotional and social functioning. The development of reliable assessment tools capable of capturing the multidimensional impact of chronic pain has challenged the medical community for decades. A number of validated tools are currently used in clinical practice however they all rely on self-reporting and are therefore inherently subjective. In this study we show that a comprehensive analysis of physical activity (PA) under real life conditions may capture behavioral aspects that may reflect physical and emotional functioning.¦METHODOLOGY: PA was monitored during five consecutive days in 60 chronic pain patients and 15 pain-free healthy subjects. To analyze the various aspects of pain-related activity behaviors we defined the concept of PA 'barcoding'. The main idea was to combine different features of PA (type, intensity, duration) to define various PA states. The temporal sequence of different states was visualized as a 'barcode' which indicated that significant information about daily activity can be contained in the amount and variety of PA states, and in the temporal structure of sequence. This information was quantified using complementary measures such as structural complexity metrics (information and sample entropy, Lempel-Ziv complexity), time spent in PA states, and two composite scores, which integrate all measures. The reliability of these measures to characterize chronic pain conditions was assessed by comparing groups of subjects with clinically different pain intensity.¦CONCLUSION: The defined measures of PA showed good discriminative features. The results suggest that significant information about pain-related functional limitations is captured by the structural complexity of PA barcodes, which decreases when the intensity of pain increases. We conclude that a comprehensive analysis of daily-life PA can provide an objective appraisal of the intensity of pain.
Resumo:
Energy expenditure was measured by means of a respiratory chamber in two groups of adult rural Gambian men. The first group (n = 29) had a low body mass index (BMI; in kg/m2) < 18.5), whereas the control group (n = 29) had a higher BMI (> 22). This study shows that the energy expenditure of Gambian men with low BMI is not different from that of Gambian men with normal BMI when the results are normalized for fat-free mass or for weight by analysis of covariance. In Gambian men the nutritional status thus does not seem to affect energy metabolism notably. No differences in respiratory quotient, diet-induced thermogenesis, net work efficiency, spontaneous physical activity, heart rate, or urinary catecholamine excretion were observed between the two groups. It is, however, interesting to note that the basal metabolic rate of Gambian men, regardless of their nutritional status, is approximately 10% (range 4-12% depending on the reference value used) lower than that predicted for individuals living in industrialized countries.