907 resultados para Bayesian animal model
Resumo:
Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degreesC with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His7-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His7-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His7-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Understanding the molecular etiology and heterogeneity of disease has a direct effect on cancer therapeutics. To identify novel molecular changes associated with breast cancer progression, we conducted phosphoproteomics of the MCF10AT model comprising isogenic, ErbB2- and ErbB3-positive, xenograft-derived cell lines that mimic different stages of breast cancer. Using in vitro animal model and clinical breast samples, our study revealed a marked reduction of epidermal growth factor receptor (EGFR) expression with breast cancer progression. Such diminution of EGFR expression was associated with increased resistance to Gefitinib/Iressa in vitro. Fluorescence in situ hybridization showed that loss of EGFR gene copy number was one of the key mechanisms behind the low/null expression of EGFR in clinical breast tumors. Statistical analysis on the immunohistochemistry data of EGFR expression from 93 matched normal and breast tumor samples showed that (a) diminished EGFR expression could. be detected as early as in the preneoplastic lesion (ductal carcinoma in situ) and this culminated in invasive carcinomas; (b) EGFR expression levels could distinguish between normal tissue versus carcinoma in situ and invasive carcinoma with high statistical significance (P
Resumo:
UC781 is a potent and poorly water-soluble nonnucleoside reverse transcriptase inhibitor being investi- gated as a potential microbicide for preventing sexual transmission of HIV-1. This study was designed to evaluate the in vivo release and pharmacokinetics of UC781 delivered from matrix-type intravaginal ring segments in rabbits. Three polymer matrices (polyurethane, ethylene vinyl acetate copolymer, and silicone elastomer) and two drug loadings (5 and 15 mg/segment) were evaluated in at least one of two independent studies for up to 28 days in vivo. Inter-study comparison of in vivo release, vaginal tissue, and plasma concentrations for similar formulations demonstrated good reproducibility of the animal model. Mean estimates for a 28-day in vivo release ranged from 0.35 to 3.17 mg UC781 per segment. Mean proximal vaginal tissue levels (adjacent to the IVR segment) were 8– 410 ng/g and did not change significantly with time for most formulations. Distal vaginal tissue levels of UC781 were 6- to 49-fold lower than proximal tissue levels. Mean UC781 plasma levels were low for all formulations, at 0.09–0.58 ng/mL. All formulations resulted in similar UC781 concentrations in vaginal tissue and plasma, except the low loading polyurethane group which provided significantly lower levels. Loading dependent release and pharmacokinetics were only clearly observed for the polyurethane matrix. Based on these results, intravaginal ring segments loaded with UC781 led to vaginal tissue concen- trations ranging from below to approximately two orders of magnitude higher than UC781’s EC50 under in vitro conditions (2.8 ng/mL), with little influence by polymer matrix or UC781 loading. Moreover, these findings support the use of rabbit vaginal pharmacokinetic studies in preclinical testing of microbicide intravaginal rings.
Resumo:
Neovascular retinal disease is a leading cause of blindness orchestrated by inflammatory responses. Although noninfectious uveoretinitis is mediated by CD4(+) T cells, in the persistent phase of disease, angiogenic responses are observed, along with degeneration of the retina. Full clinical manifestation relies on myeloid-derived cells, which are phenotypically distinct from, but potentially sharing common effector responses to age-related macular degeneration. To interrogate inflammation-mediated angiogenesis, we investigated experimental autoimmune uveoretinitis, an animal model for human uveitis. After the initial acute phase of severe inflammation, the retina sustains a persistent low-grade inflammation with tissue-infiltrating leukocytes for over 4 months. During this persistent phase, angiogenesis is observed as retinal neovascular membranes that arise from inflamed venules and postcapillary venules, increase in size as the disease progresses, and are associated with infiltrating arginase-1(+) macrophages. In the absence of thrombospondin-1, retinal neovascular membranes are markedly increased and are associated with arginase-1(-) CD68(+) macrophages, whereas deletion of the chemokine receptor CCR2 resulted in reduced retinal neovascular membranes in association with a predominant neutrophil infiltrate. CCR2 is important for macrophage recruitment to the retina in experimental autoimmune uveoretinitis and promotes chronicity in the form of a persistent angiogenesis response, which in turn is regulated by constitutive expression of angiogenic inhibitors like thrombospondin-1. This model offers a new platform to dissect the molecular and cellular pathology of inflammation-induced ocular angiogenesis.
Resumo:
Recent societal acceptance of cannabinoids as recreational and therapeutic drugs has posed a potential hazard to male reproductive health. Mammals have a highly sophisticated endogenous cannabinoid (ECS) system that regulates male (and female) reproduction and exo-cannabinoids may influence it adversely. Therefore it is imperative to determine their effects on male reproduction so that men can make informed choices as to their use. Here, an animal model was used to administer HU210, a synthetic analogue of ?9-tetrahydrocannabinol (THC) and potent cannabinoid receptor (CB) agonist to determine its effects on reproductive organ weights, spermatogenesis, testicular histology and sperm motility. Its effects on the physiological endocannabinoid system were also investigated. Spermatogenesis was markedly impaired with reductions in total sperm count after 2 weeks of exposure. Spermatogenic efficiency was depleted, and Sertoli cell number decreased as exposure time increased with seminiferous tubules showing germ cell depletion developing into atrophy in some cases. Sperm motility was also adversely affected with marked reductions from 2 weeks on. HU210 also acted on the sperm’s endocannabinoid system. Long term use of exo-cannabinoids has adverse effects on both spermatogenesis and sperm function. These findings highlight the urgent need for studies evaluating the fertility potential of male recreational drug users.
Resumo:
A monospecific polyclonal antiserum, prepared against Bacteroides fragilis common polysaccharide antigen purified by polyacrylamide gel immunoblot detected B. fragilis, B. thetaiotaomicron, B. ovatus and Prevotella melaninogenica in pus samples from various anatomical sites by immunofluorescence microscopy of the pus. With standard clinical laboratory culture methods, 36% of 147 samples were positive for one or more of the above bacteria. Of these, B. fragilis accounted for 33%. By immunofluorescent labelling of pus with the common antigen antiserum the detection of these bacteria in the samples increased to 50%. All nine of the blood cultures in which B. fragilis was detected by culture contained bacteria positive for the common antigen. Immunofluorescent labelling of pus samples with a selection of monoclonal antibodies specific for surface polysaccharides which are known to be antigenically variable in culture in vitro and in an animal model of infection showed that these polysaccharides are also variable in natural infection. The results indicate that the common polysaccharide antigen, in contrast to the variable surface polysaccharides, is a suitable target for the immunodetection of B, fragilis in clinical samples from a range of anatomical sites.
Resumo:
Purpose: To investigate the temporal course of corneal sensitivity loss & the role of aldose reductase inhibitors (ARI) in an animal model of diabetic ocular complications. Methods: Weanling male S-D rats were randomly grouped to received ad libitum water & diet consisting of Purina (#5001) w/ either: 50% starch (CON,n=15) or 50% D-galactose (GAL,n=30). Half the galactosemic rats (ARI,n=15) received topical 0.25% CT-112 (3x daily, 20µl, Senju Pharmaceutical Co., Japan). Control & remaining half of the galactosemic animals received equivalent doses of saline eyedrops. Rats were restrained w/o medication during sensitivity measurements conducted w/ a Cochet-Bonnet Aesthesiometer mounted on a micromanipulator. The end of the filament (0.012mm dia.), which applied a mean pressure of 0.96 g/mm perpendicular to the corneal surface at center, was in the plane of focus of a slit-lamp biomicroscope. Measurements were conducted by two investigators which were masked to the treatment group. The average blink-responses from 10 consecutive stimuli to each cornea were expressed as a percent. Results: Mean (±SD) baseline corneal sensitivity in all groups were similar (CON 73%±11, GAL 71%±15, ARI 74%±16). Corneal sensitivity in the galactosemic rat was decreased (p
Resumo:
Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.
Resumo:
The biochemical perturbations in diabetes mellitus (DM) create the conditions for the production of free radicals, the consequence of which is increased oxidative stress. Evidence has accrued over the past 2 decades that suggests that oxidative stress is an important pathogenetic factor in the development of diabetic retinopathy (DR). Experimental data show that the use of strategies that ameliorate oxidative stress can prevent and retard the development of DR in the animal model. Clinical observations also suggest that reducing oxidative stress may help to reverse pathological manifestations of DR. The present article constitutes an examination of the role of antioxidants in the management of DR and the current state of clinically relevant knowledge. © 2013 Springer Science+Business Media New York.
Resumo:
The purpose of this study was to define pathological abnormalities in the peripheral nerve of a large animal model of long-duration type 1 diabetes and also to determine the effects of treatment with sulindac. Detailed morphometric studies were performed to define nerve fiber and endoneurial capillary pathology in 6 control dogs, 6 type 1 diabetic dogs treated with insulin, and 6 type 1 diabetic dogs treated with insulin and sulindac for 4 years. Myelinated fiber and regenerative cluster density showed a non-significant trend toward a reduction in diabetic compared to control animals, which was prevented by treatment with sulindac. Unmyelinated fiber density did not differ among groups. However, diabetic animals showed a non-significant trend toward an increase in axon diameter (p <0.07), with a shift of the size frequency distribution towards larger axons, which was not prevented by treatment with sulindac. Endoneurial capillary density and luminal area showed a non-significant trend toward an increase in diabetic animals, which was prevented with sulindac treatment. Endoneurial capillary basement membrane area was significantly increased (p <0.05) in diabetic animals, but was not prevented with sulindac treatment. We conclude that the type 1 diabetic dog demonstrates minor structural abnormalities in the nerve fibers and endoneurial capillaries of the sciatic nerve, and treatment with sulindac ameliorates some but not all of these abnormalities.
Resumo:
Mortality models used for forecasting are predominantly based on the statistical properties of time series and do not generally incorporate an understanding of the forces driving secular trends. This paper addresses three research questions: Can the factors found in stochastic mortality-forecasting models be associated with real-world trends in health-related variables? Does inclusion of health-related factors in models improve forecasts? Do resulting models give better forecasts than existing stochastic mortality models? We consider whether the space spanned by the latent factor structure in mortality data can be adequately described by developments in gross domestic product, health expenditure and lifestyle-related risk factors using statistical techniques developed in macroeconomics and finance. These covariates are then shown to improve forecasts when incorporated into a Bayesian hierarchical model. Results are comparable or better than benchmark stochastic mortality models.
Resumo:
The 1950s excavations by Charles McBurney in the Haua Fteah, a large karstic cave on the coast of northeast Libya, revealed a deep sequence of human occupation. Most subsequent research on North African prehistory refers to his discoveries and interpretations, but the chronology of its archaeological and geological sequences has been based on very early age determinations. This paper reports on the initial results of a comprehensive multi-method dating program undertaken as part of new work at the site, involving radiocarbon dating of charcoal, land snails and marine shell, cryptotephra investigations, optically stimulated luminescence (OSL) dating of sediments, and electron spin resonance (ESR) dating of tooth enamel. The dating samples were collected from the newly exposed and cleaned faces of the upper 7.5m of the ~14.0m-deep McBurney trench, which contain six of the seven major cultural phases that he identified. Despite problems of sediment transport and reworking, using a Bayesian statistical model the new dating program establishes a robust framework for the five major lithostratigraphic units identified in the stratigraphic succession, and for the major cultural units. The age of two anatomically modern human mandibles found by McBurney in Layer XXXIII near the base of his Levalloiso-Mousterian phase can now be estimated to between 73 and 65ka (thousands of years ago) at the 95.4% confidence level, within Marine Isotope Stage (MIS) 4. McBurney's Layer XXV, associated with Upper Palaeolithic Dabban blade industries, has a clear stratigraphic relationship with Campanian Ignimbrite tephra. Microlithic Oranian technologies developed following the climax of the Last Glacial Maximum and the more microlithic Capsian in the Younger Dryas. Neolithic pottery and perhaps domestic livestock were used in the cave from the mid Holocene but there is no certain evidence for plant cultivation until the Graeco-Roman period. © 2013 Elsevier Ltd.
Resumo:
BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune inflammatory demyelination that is mediated by Th1 and Th17 cells. The transcription factor interferon regulatory factor 3 (IRF3) is activated by pathogen recognition receptors and induces interferon-beta production.
METHODS: To determine the role of IRF3 in autoimmune inflammation, we immunised wild-type (WT) and irf3-/- mice to induce EAE. Splenocytes from WT and irf3-/- mice were also activated in vitro in Th17-polarising conditions.
RESULTS: Clinical signs of disease were significantly lower in mice lacking IRF3, with reduced Th1 and Th17 cells in the central nervous system. Peripheral T-cell responses were also diminished, including impaired proliferation and Th17 development in irf3-/- mice. Myelin-reactive CD4+ cells lacking IRF3 completely failed to transfer EAE in Th17-polarised models as did WT cells transferred into irf3-/- recipients. Furthermore, IRF3 deficiency in non-CD4+ cells conferred impairment of Th17 development in antigen-activated cultures.
CONCLUSION: These data show that IRF3 plays a crucial role in development of Th17 responses and EAE and warrants investigation in human multiple sclerosis.
Resumo:
Ewing's sarcoma (ES) is the second most common bone cancer in children and young people. Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) is the prototype of a family of synthetic antitumor compounds, collectively known as alkylphospholipid analogs (APLs). We have found that APLs ranked edelfosine>perifosine>erucylphosphocholine>miltefosine for their capacity to promote apoptosis in ES cells. Edelfosine accumulated in the endoplasmic reticulum (ER) and triggered an ER stress response that eventually led to caspase-dependent apoptosis in ES cells. This apoptotic response involved mitochondrial-mediated processes, with cytochrome c release, caspase-9 activation and generation of reactive oxygen species. Edelfosine-induced apoptosis was also dependent on sustained c-Jun NH2-terminal kinase activation. Oral administration of edelfosine showed a potent in vivo antitumor activity in an ES xenograft animal model. Histochemical staining gave evidence for ER stress response and apoptosis in the ES tumors isolated from edelfosine-treated mice. Edelfosine showed a preferential action on ES tumor cells as compared to non-transformed osteoblasts, and appeared to be well suited for combination therapy regimens. These results demonstrate in vitro and in vivo antitumor activity of edelfosine against ES cells that is mediated by caspase activation and ER stress, and provide the proof of concept for a putative edelfosine-and ER stress-mediated approach for ES treatment.
Resumo:
PURPOSE: The pig eye is similar to the human eye in terms of anatomy, vasculature, and photoreceptor distribution, and therefore provides an attractive animal model for research into retinal disease. The purpose of this study was to characterize retinal histology in the developing and mature pig retina using antibodies to well established retinal cell markers commonly used in rodents.
METHODS: Eyes were enucleated from fetuses in the 9th week of gestation, 1 week old piglets and 6 months old adult animals. Eyeglobes were fixed and cryosectioned. A panel of antibodies to well established retinal markers was employed for immunohistochemistry. Fluorescently labeled secondary antibodies were used for signal detection, and images were acquired by confocal microscopy. Mouse retina at postnatal day (P) 5 was used as a reference for this study to compare progression of histogenesis. Most of the primary antibodies have previously been used on mouse tissue.
RESULTS: Most of the studied markers were detected in midgestation pig retina, and the majority had a similar distribution in pig as in P5 mouse retina. However, rhodopsin immunolabeling was detected in pig retina at midgestation but not in P5 mouse retina. Contrary to findings in all rodents, horizontal cells were Islet1-positive and cones were calbindin-immunoreactive in pig retina, as has also been shown for the primate retina. Recoverin and rhodopsin immunolabeling revealed an increase in the length of photoreceptor segments in 6 months, compared to 1 week old animals.
CONCLUSIONS: Comparison with the published data on human retina revealed similar marker distribution and histogenesis progression in the pig and human retina, supporting the pig as a valuable animal model for studies on retinal disease and repair. Furthermore, this study provides information about the dynamics of retinal histogenesis in the pig and validates a panel of antibodies that reliably detects developing and mature retinal cell phenotypes in the pig retina.