574 resultados para Bathing beaches
Resumo:
Two images. First image shows a wrecked ship and tank on a beach with a large ship in the background. Caption; "Surf pounding wrecked landing craft that were stopped on the beach." Second image shows numerous Japanese vessels on a beach. Caption; "Wrecked Japanese craft littered the beaches."
Resumo:
Two images. First image shows the view from Mt. Suribachi, looking down on the southeastern beaches with a ship near the shore. Caption; "From atop Mt. Suribachi looking down southeastern beaches." Second image is an aerial view that shows a base of operations on the western beaches, with a large number of vehicles and material surrounded by a road and a cargo ship approaching the shore. Caption; "Unloading on the western beaches."
Resumo:
Two images. First image shows the view of encampment on the western beaches from atop Mt. Suribachi. Numerous tents and small structures are visible near the foreground of the image. Caption; "Looking down western beach from atop Mt. Suribachi." Second image shows a large stack of artillery shell cases. Caption; "Empty artillery shell cases after morning preparation."
Resumo:
Emerson Boyles, Mabel Boyles, E.B. Morgan at Wall [sic] Lake. Standing around sunken boat in bathing suits
Resumo:
No. 1-3 issued without numbering.
Resumo:
On the morning of March 27th, 2013, a small portion of a much larger landslide complex failed on the western shoreline of central Whidbey Island, Island County, Washington. This landslide, known as the Ledgewood-Bonair Landslide (LB Landslide), mobilized as much as 150,000 cubic meters of unconsolidated glacial sediment onto the coastline of the Puget Sound (Slaughter et al., 2013, Geotechnical Engineering Services, 2013). This study aims to determine how sediment from the Ledgewood-Bonair Landslide has acted on the adjacent beaches 400 meters to the north and south, and specifically to evaluate the volume of sediment contributed by the slide to adjacent beaches, how persistent bluff-derived accretion has been on adjacent beaches, and how intertidal grain sizes changed as a result of the bluff-derived sediment, LiDAR imagery from 2013 and 2014 were differenced and compared to beach profile data and grain size photography. Volume change results indicate that of the 41,850 cubic meters of sediment eroded at the toe of the landslide, 8.9 percent was redeposited on adjacent beaches within 1 year of the landslide. Of this 8.9 percent, 6.3 percent ended up on the north beach and 2.6 percent ended up on the south beach. Because the landslide deposit was primarily sands, silts, and clays, it is reasonable to assume that the remaining 91.1 percent of the sediment eroded from the landslide toe was carried out into the waters of the Puget Sound. Over the course of the two-year study, measurable accretion is apparent up to 150 meters north and 100 meters south of the landslide complex. Profile data also suggests that the most significant elevation changes occurred within the first two and half months since the landslides occurrence. The dominant surficial grain size of the beach soon after the landslide was coarse-sand; in the years following the landslide, 150 meters north of the toe the beach sediment became finer while 100 meters south of the toe the beach sediment became coarser. Overall, the LB Landslide has affected beach profile and grain size only locally, within 150 meters of the landslide toe.
Resumo:
Field observations on an unconfined coastal aquifer showed that a groundwater pulse, generated by it moderate (significant wave height, H-sig similar to 4.5 m) wave/storm event, induced significant oscillations in the salt-freshwater interface of the order of several metres in the horizontal direction. A dynamic sharp-interface model is developed to quantify the mechanism of these interface oscillations. The model uses the 50% seawater salinity contour as the location of the equivalent sharp-interface. The model was calibrated against the observed groundwater table fluctuations. It predicted reasonably well the interface oscillations with a slight over-prediction of the oscillation magnitude and a steepening of the interface. The neglect of mixing in the salt-freshwater mixing zone by the sharp-interface model is suggested as a possible contributor to the discrepancies between the model predictions and observations. In contrast with the significant wave effects, there was no observable response of the interface to diurnal or semidiurnal tides. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A new influx of sea-rafted pumice reached the eastern coast of Australia in October 2002, approximately 1 year after a felsic, shallow-marine explosive eruption at a previously unknown volcano (0403-091) along the Tofua volcanic arc (Tonga). The eruption produced floating pumice rafts that first became stranded in Fiji in November 2001, approximately I month after the eruption. Strandings of sea-rafted pumice along shorelines have been the only record of products from this submarine explosive eruption at the remote, submerged volcano. Computed drift trajectories of the sea-rafted pumice using numerical models of southwest Pacific surface wind fields and ocean currents indicate two cyclonic systems disturbed the drift of pumice to eastern Australia, as well as the importance of the combined wave and direct wind effect on pumice trajectory. Pumice became stranded along at least two-thirds (>2000 km) of the coastline of eastern Australia, being deposited on beaches during a sustained period of fresh onshore winds. Typical amounts of pumice initially stranded on beaches were 500-4000 individual clasts per in, and a minimum volume estimate of pumice that arrived to eastern Australia is 1.25 x 10(5) m(3). Pumice was beached below maximum tidal/storm surge levels and was quickly reworked back into the ocean, such that the concentration of beached pumice rapidly dissipated within weeks of the initial stranding, and little record of this stranding event now exists. Most stranded pumice clasts ranged in size from 2 to 5 cm in diameter; the largest measured clasts were 10 cm in Australia and 20 cm in Fiji. The pumice has a low phenocryst content (3500 km) and period of pumice floatation (greater than or equal to1 year), confirm the importance of sea-rafted pumice as a long-distance dispersal mechanism for marine organisms including marine pests and harmful invasive species. Billions of individual rafting pumice clasts can be generated in a single small-volume eruption, such as observed here, and the geological implications for the transport of sessile taxa over large distances are significant. An avenue for future research is to examine whether speciation events and volcanicity are linked; the periodic development of globalism for some taxa (e.g., corals, gastropods, bryozoa) may correlate in time and/or space with voluminous silicic igneous events capable of producing >10(6) km(3) of silicic pumice-rich pyroclastic material and emplaced into ocean basins. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Four mine waste beach longitudinal profile equations are compared theoretically and in statistical analyses of profile data from 64 field and laboratory beaches formed by mine tailings, co-disposed coal mine wastes, and sand. All four equations fit the profile data well. The best performing equation both accounts for particle sorting and satisfies hydraulic constraints, and the combination of assumptions underlying it is considered to best represent the processes occurring on mine waste beaches. Combining these assumptions with the Lacey normal equation leads to a variant of the Manning resistance equation. Features that it is desirable to incorporate in theoretical and numerical models of mine waste beaches are listed.
Resumo:
Large groundwater table fluctuations were observed in a coastal aquifer during an offshore storm. The storm induced significant changes of the mean shoreline elevation, characterized by a pulse-like oscillation. This pulse propagated in the aquifer, resulting in the water table fluctuations. A general analytical solution is derived to quantify this new mechanism of water table fluctuation. The solution is applied to field observations and is found to be able to predict reasonably well the observed storm-induced water table fluctuations. Based on the analytical solution, the damping characteristics and phase shift of the oscillation as it propagates inland are examined.
Resumo:
An existing capillarity correction for free surface groundwater flow as modelled by the Boussinesq equation is re-investigated. Existing solutions, based on the shallow flow expansion, have considered only the zeroth-order approximation. Here, a second-order capillarity correction to tide-induced watertable fluctuations in a coastal aquifer adjacent to a sloping beach is derived. A new definition of the capillarity correction is proposed for small capillary fringes, and a simplified solution is derived. Comparisons of the two models show that the simplified model can be used in most cases. The significant effects of higher-order capillarity corrections on tidal fluctuations in a sloping beach are also demonstrated. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Free surface flow of groundwater in aquifers has been studied since the early 1960s. Previous investigations have been based on the Boussinesq equation, derived from the non-linear kinematic boundary condition. In fact, the Boussinesq equation is the zeroth-order equation in the shallow-water expansion. A key assumption in this expansion is that the mean thickness of the aquifer is small compared with a reference length, normally taken to be the linear decay length. In this study, we re-examine the expansion scheme for free surface groundwater flows, and propose a new expansion wherein the shallow-water assumption is replaced by a steepness assumption. A comparison with experimental data shows that the new model provides a better prediction of water table levels than the conventional shallow-water expansion. The applicable ranges of the two expansions are exhibited. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Many long-lived marine species exhibit life history traits. that make them more vulnerable to overexploitation. Accurate population trend analysis is essential for development and assessment of management plans for these species. However, because many of these species disperse over large geographic areas, have life stages inaccessible to human surveyors, and/or undergo complex developmental migrations, data on trends in abundance are often available for only one stage of the population, usually breeding adults. The green turtle (Chelonia mydas) is one of these long-lived species for which population trends are based almost exclusively on either numbers of females that emerge to nest or numbers of nests deposited each year on geographically restricted beaches. In this study, we generated estimates of annual abundance for juvenile green turtles at two foraging grounds in the Bahamas based on long-term capture-mark-recapture (CMR) studies at Union Creek (24 years) and Conception Creek (13 years), using a two-stage approach. First, we estimated recapture probabilities from CMR data using the Cormack-Jolly-Seber models in the software program MARK; second, we estimated annual abundance of green turtles. at both study sites using the recapture probabilities in a Horvitz-Thompson type estimation procedure. Green turtle abundance did not change significantly in Conception Creek, but, in Union Creek, green turtle abundance had successive phases of significant increase, significant decrease, and stability. These changes in abundance resulted from changes in immigration, not survival or emigration. The trends in abundance on the foraging grounds did not conform to the significantly increasing trend for the major nesting population at Tortuguero, Costa Rica. This disparity highlights the challenges of assessing population-wide trends of green turtles and other long-lived species. The best approach for monitoring population trends may be a combination of (1) extensive surveys to provide data for large-scale trends in relative population abundance, and (2) intensive surveys, using CMR techniques, to estimate absolute abundance and evaluate the demographic processes' driving the trends.
Resumo:
Surf Life Saving Queensland (SLSQ) is a leading authority on beach safety, providing patrol, education, and rescue services to both tourists and local residents along the coast of Queensland, Australia. SLSQ recognizes that tourists are a target group requiring special attention due to their unfamiliarity with ocean beaches and surfing activities, and in some cases having the additional challenge of poor swimming skills, language barriers, and disorientation in a foreign vacation environment. This article describes SLSQ initiatives to provide beach safety for tourists through a focus on service delivery and partnerships with the tourism industry and relevant government agencies. The positive involvement of SLSQ in tourism is a model for other coastal destinations, given that drowning is the second most frequent cause of injury death among international travelers.