981 resultados para Bacteria, mass per individual


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2) concentrations has supported the view that copepods are 'winners' under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage-specific responses to pCO2 (385-6000 µatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 µatm (year 2100 scenario) with LC50 at 1084 µatm pCO2. In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations >= 3000 µatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 µatm pCO2. This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life-cycle approach to make species-level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic Ocean is a bellwether for ocean acidification, yet few direct Arctic studies have been carried out and limited observations exist, especially in winter. We present unique under-ice physicochemical data showing the persistence of a mid water column area of high CO2 and low pH through late winter, Zooplankton data demonstrating that the dominant copepod species are distributed across these different physicochemical conditions, and empirical data demonstrating that these copepods show sensitivity to pCO2 that parallels the range of natural pCO2 they experience through their daily vertical migration behavior. Our data, collected as part of the Catlin Arctic Survey, provide unique insight into the link between environmental variability, behavior, and an organism's physiological tolerance to CO2 in key Arctic biota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data volume presents a series of planktological observations carried out over a 19-year-period in Kiel Bight in the Western Baltic Sea. Three fixed stations were visited at monthly intervals, and the planktion standing stock was investigated in relation to depth and environmental factors, employing a standard observation programme. This consisted in the measurements of temperature, salinity, density, oxygen, phosphorus, seston, protein and chlorophyll a. Additional measurements comprised in the caloric content of seston, particulate organic carbon and nitrogen, as well as dry weight and organic matter of plankton, sampled by vertical hauls of three plankton nets of different mesh size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO3[2-]] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 +/- 7% per 100 µmol [CO3[2-]] kg**-1, as seawater [CO3[2-]] increases from 110 to 470 µmol kg**-1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ~+40% at the same environmental [CO3[2-]]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO3[2-]] was 110 +/- 70 µmol kg**-1 and 80 +/- 40 µmol kg**-1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO3[2-]] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean's carbonate concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT-NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT-NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT-NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT-NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT-NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.