961 resultados para B-Cell
Resumo:
BAFF is a B cell survival factor that binds to three receptors BAFF-R, TACI and BCMA. BAFF-R is the receptor triggering naïve B cell survival and maturation while BCMA supports the survival of plasma cells in the bone marrow. Excessive BAFF production leads to autoimmunity, presumably as the consequence of inappropriate survival of self-reactive B cells. The function of TACI has been more elusive with TACI(-/-) mice revealing two sides of this receptor, a positive one driving T cell-independent immune responses and a negative one down-regulating B cell activation and expansion. Recent work has revealed that the regulation of TACI expression is intimately linked to the activation of innate receptors on B cells and that TACI signalling in response to multimeric BAFF and APRIL provides positive signals to plasmablasts. How TACI negatively regulates B cells remains elusive but may involve an indirect control of BAFF levels. The discovery of TACI mutations associated with common variable immunodeficiency (CVID) in humans not only reinforces its important role for humoral responses but also suggests a more complex role than first anticipated from knockout animals. TACI is emerging as an unusual TNF receptor-like molecule with a sophisticated mode of action.
Resumo:
The mucosa-associated lymphoid tissue protein-1 (MALT1, also known as paracaspase) is a protease whose activity is essential for the activation of lymphocytes and the growth of cells derived from human diffuse large B-cell lymphomas of the activated B-cell subtype (ABC DLBCL). Crystallographic approaches have shown that MALT1 can form dimers via its protease domain, but why dimerization is relevant for the biological activity of MALT1 remains largely unknown. Using a molecular modeling approach, we predicted Glu 549 (E549) to be localized within the MALT1 dimer interface and thus potentially relevant. Experimental mutation of this residue into alanine (E549A) led to a complete impairment of MALT1 proteolytic activity. This correlated with an impaired capacity of the mutant to form dimers of the protease domain in vitro, and a reduced capacity to promote NF-κB activation and transcription of the growth-promoting cytokine interleukin-2 in antigen receptor-stimulated lymphocytes. Moreover, this mutant could not rescue the growth of ABC DLBCL cell lines upon MALT1 silencing. Interestingly, the MALT1 mutant E549A was unable to undergo monoubiquitination, which we identified previously as a critical step in MALT1 activation. Collectively, these findings suggest a model in which E549 at the dimerization interface is required for the formation of the enzymatically active, monoubiquitinated form of MALT1.
Resumo:
The persistence of serum IgG antibodies elicited in human infants is much shorter than when such responses are elicited later in life. The reasons for this rapid waning of antigen-specific antibodies elicited in infancy are yet unknown. We have recently shown that adoptively transferred tetanus toxoid (TT)-specific plasmablasts (PBs) efficiently reach the bone marrow (BM) of infant mice. However, TT-specific PBs fail to persist in the early-life BM, suggesting that they fail to receive the molecular signals that support their survival/differentiation. Using a proliferation-inducing ligand (APRIL)- and B-cell activating factor (BAFF) B-lymphocyte stimulator (BLyS)-deficient mice, we demonstrate here that APRIL is a critical factor for the establishment of the adult BM reservoir of anti-TT IgG-secreting cells. Through in vitro analyses of PB/plasma cell (PC) survival/differentiation, we show that APRIL induces the expression of Bcl-X(L) by a preferential binding to heparan sulfate proteoglycans at the surface of CD138(+) cells. Last, we identify BM-resident macrophages as the main cells that provide survival signals to PBs and show that this function is slowly acquired in early life, in parallel to a progressive acquisition of APRIL expression. Altogether, this identifies APRIL as a critical signal for PB survival that is poorly expressed in the early-life BM compartment.
Resumo:
Splenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8 Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrated transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P<0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL. These observations provide valuable guidance for further characterisation of 7q deletion.
Resumo:
While it is now well accepted that radiolabeled antibodies can be useful for tumour detection by immunoscintigraphy, the use of larger doses of more aggressive radioisotopes coupled to antibodies for radioimmunotherapy is still in its infancy. At the experimental level, our group has shown that the intravenous injection of large doses of 131I labeled F(ab')2 fragments from monoclonal anti-carcinoembryonic antigen (CEA) antibodies can eradicate well established human colon carcinoma xenografts in nude mice. At the clinical level, in a dosimetry study performed at the Institut Gustave Roussy, the same anti-CEA monoclonal antibodies and fragments, labeled with subtherapeutic doses of 131I, were injected in patients with liver metastases from colorectal carcinomas. Direct measurement of radioactivity in surgically resected liver metastases and normal liver confirmed the specificity of tumour localization of the antibodies, but also showed that the calculated radiation doses which could be delivered by injections of 200 to 300 mCi of 131I labeled antibodies or fragments, remained fairly low, in the range of 1,500 to 3,000 rads. This is obviously insufficient for a single modality treatment. An alternative approach is to inject radiolabeled antibodies intra peritoneally to treat peritoneal carcinomatosis. Several clinical studies using this strategy are presently under evaluation and suggest that positive results can be obtained when the tumour diameters are very small. In systemic radioimmunotherapy, positive results have been obtained in more radiosensitive types of malignancies such as B cell lymphomas by intravenous injection of antibodies directed against B cell differentiation markers or against idiotypic antigens from each lymphoma, and labeled with 131I or 90Y. The major directions of research for improvement of radioimmunotherapy include the design of genetically engineered new forms of humanized antibodies, the synthesis of original chelates for coupling new radioisotopes to antibodies and the development of two step strategies for immunolocalization of radioisotopes.
Resumo:
Infectious mouse mammary tumor virus (MMTV) is a retrovirus that expresses a superantigen shortly after infection of B cells. The superantigen first drives the polyclonal activation and proliferation of superantigen-reactive CD4+ T cells, which then induce the infected B cells to proliferate and differentiate. Part of the MMTV-induced B cell response leads to the production of Abs that are specific for the viral envelope protein gp52. Here we show that this Ab response has virus-neutralizing activity and confers protection against superinfection by other MMTV strains in vivo as soon as 4 to 7 days after infection. A protective Ab titer is maintained lifelong. Viral infection as well as the superantigen-induced T-B collaboration are required to generate this rapid and long lasting neutralizing Ab response. Polyclonal or superantigen-independent B cell activation, on the contrary, does not lead to detectable virus neutralization. The early onset of this superantigen-dependent neutralizing response suggests that viral envelope-specific B cells are selectively recruited to form part of the extrafollicular B cell response and are subsequently amplified and maintained by superantigen-reactive Th cells.
Resumo:
Systemic lupus erythematosus (SLE) is a severe and incurable autoimmune disease characterized by chronic activation of plasmacytoid dendritic cells (pDCs) and production of autoantibodies against nuclear self-antigens by hyperreactive B cells. Neutrophils are also implicated in disease pathogenesis; however, the mechanisms involved are unknown. Here, we identified in the sera of SLE patients immunogenic complexes composed of neutrophil-derived antimicrobial peptides and self-DNA. These complexes were produced by activated neutrophils in the form of web-like structures known as neutrophil extracellular traps (NETs) and efficiently triggered innate pDC activation via Toll-like receptor 9 (TLR9). SLE patients were found to develop autoantibodies to both the self-DNA and antimicrobial peptides in NETs, indicating that these complexes could also serve as autoantigens to trigger B cell activation. Circulating neutrophils from SLE patients released more NETs than those from healthy donors; this was further stimulated by the antimicrobial autoantibodies, suggesting a mechanism for the chronic release of immunogenic complexes in SLE. Our data establish a link between neutrophils, pDC activation, and autoimmunity in SLE, providing new potential targets for the treatment of this devastating disease.
Resumo:
T-cell receptor (TCR) engagement induces the maturation of thymocytes and the activation and proliferation of peripheral T cells through signaling pathways that target several transcription factors. The transcription factor nuclear factor-κB (NF-κB) has an essential role in the activation of mature T cells but the signaling pathway leading from TCR stimulation to NF-κB activation is not well defined. Carma1, Bcl10 and MALT1 are recently identified proteins that have an important and previously unexpected role in antigen receptor-induced NF-κB activation and the control of lymphocyte proliferation. We believe that the recent advances in this field could stimulate research for the development of new immunomodulatory drugs and could lead to a better understanding of the molecular mechanisms underlying the formation of lymphomas and potentially of other immune disorders.
Resumo:
A distinct subset of T helper cells, named follicular T helper cells (T(FH), has been recently described. T(FH) cells are characterized by their homing capacities in the germinal centers of B-cell follicles where they interact with B cells, supporting B-cell survival and antibody responses. T(FH) cells can be identified by the expression of several markers including the chemokine CXCL13, the costimulatory molecules PD1 and inducible costimulator, and the transcription factor BCL6. They appear to be relevant markers for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL) and have helped to recognize subsets of peripheral T-cell lymphoma, not otherwise specified, with nodal or cutaneous presentation expressing T(FH) antigens that might be related to AITL. In B-cell neoplasms, T(FH) cells are present within the microenvironment of nodular lymphocyte-predominant Hodgkin lymphoma and follicular lymphoma, where they likely support the growth of neoplastic germinal center-derived B cells. Interestingly, the amount of PD1+ cells in the neoplastic follicles might have a favorable impact on the outcome of follicular lymphoma patients. Altogether, the availability of antibodies directed to T(FH)-associated molecules has important diagnostic and prognostic implications in hematopathology. In addition, T(FH) cells could represent interesting targets in T(FH)-derived lymphomas such as AITL, or in some B-cell neoplasms where they act as part of the tumor microenvironment.
Resumo:
The protease activity of the paracaspase MALT1 is central to lymphocyte activation and lymphomagenesis, but how this activity is controlled remains unknown. Here we identify a monoubiquitination of MALT1 on Lys644 that activated the protease function of MALT1. Monoubiquitinated MALT1 had enhanced protease activity, whereas a ubiquitination-deficient MALT1 mutant with replacement of that lysine with arginine (MALT1(K644R)) had less protease activity, which correlated with impaired induction of interleukin 2 (IL-2) via the T cell antigen receptor in activated T cells. Expression of MALT1(K644R) diminished the survival of cells derived from diffuse large B cell lymphoma of the activated B cell-like subtype (ABC DLBCL), which require constitutive protease activity of MALT1 for survival. Thus, monoubiquitination of MALT1 is essential for its catalytic activation and is therefore a potential target for the treatment of ABC-DLBCL and for immunomodulation.
Resumo:
The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.
Resumo:
More than 246 million individuals worldwide are affected by diabetes mellitus (DM) and this number is rapidly increasing (http://www.eatlas. idf.org). 90% of all diabetic patients have type 2 DM, which is characterized by insulin resistance and b-cell dysfunction. Even though diabetic peripheral neuropathy (DPN) is the major chronic complication of DM its underlying pathophysiological mechanisms still remain unknown. To get more insight into the DPN associated with type 2 DM, we characterized the rodent model of this form of diabetes, the db/db mice. The progression of pathological changes in db/db mice mimics the ones observed in humans: increase of the body weight, insulin insensitivity, elevated blood glucose level and reduction in nerve conduction velocity (NCV). Decreased NCV, present in many peripheral neuropathies, is usually associated with demyelination of peripheral nerves. However, our detailed analysis of the sciatic nerves of db/db mice exposed for 4 months to hyperglycemia, failed to reveal any signs of demyelination in spite of significantly reduced NCV in these animals. We therefore currently focus our analysis on the structure of Nodes of Ranvier, regions of intense axo-glial interactions, which also play a crucial role in rapid saltatory impulse conduction. In addition we are also evaluating molecular changes in somas of sensory neurons projecting through sciatic nerve, which are localized in the dorsal root ganglia. We hope that the combination of these approaches will shed light on molecular alterations leading to DPN as a consequence of type 2 DM.
Resumo:
Objective: A 26-year-old man with a history of Crohn's disease, treated with azathioprine since 2 years, presented an Epstein-Barr virus (EBV) primo-infection and exacerbation of digestive symptoms. Method: An ileo-colectomy was performed, which showed a fatal EBV lymphoproliferation disorder along with a haemophagocytic syndrome. EBV DNA load in the peripheral blood persisted to be high loaded during hospitalisation (479,000 copies per milliliter) despite triple antiviral treatment. Results: Autopsy revealed a systemic lymphoproliferation involving lymph nodes, gastrointestinal mucosa and solid viscera (heart, kidney, lungs, prostate, brain). This was compounded of a population of large polymorphic B cell, hypertrophic macrophages and T lymphocytes, associated to haemophagocytosis. These massive infiltrations mimicked macroscopically as ulcers in the intestinal mucosa and ranged from polymorphic with plasmocytic differentiation to monomorphic large cells. Autopsy results confirmed the absence of Crohn's disease reactivation. The EBV infection was observed in all organs within the large images of the B cell lymphoproliferations. Further postmortem investigations revealed a deficit of the azathioprine's metabolisation enzyme thiopurine methyltransferase (TPMT). Conclusion: We report and discuss herein the observations of a complete autopsy case along with the postmortem identification of the EBV infection type and TPMT mutation in a patient treated by azathioprine for Crohn's disease. Autopsy findings and further investigations helped explain the complicate clinical evolution and the fatal issue of the patient.
Resumo:
There is very limited data on isolated systemic relapses of primary central nervous system lymphomas (PCNSL). We retrospectively reviewed the clinical characteristics and outcome of 10 patients with isolated systemic disease among 209 patients with PCNSL mainly treated with methotrexate-based chemotherapy (CT) with or without radiation therapy (RT). Isolated systemic relapse remained rare (4.8%, 10/209 patients). Median time from initial diagnosis to relapse was 33 months (range, 3-94). Sites of relapse were mostly extranodal. Three patients presented with early extra-cerebral (EC) relapse 3, 5 and 8 months from the beginning of initial treatment, respectively, and 7 patients had later relapses (range, 17-94 months). Treatment at relapse included surgery alone, RT alone, CT with or without radiotherapy, or CT with autologous stem cell transplantation (ASCT). Median overall survival (OS) after relapse was 15.5 months (range, 5.8-24.5) compared to 4.6 months (range, 3.6-6.5) for patients with central nervous system (CNS) relapse (p = 0.35). In conclusion, isolated systemic relapses exist but are infrequent. Early EC relapse suggests the presence of systemic disease undetectable by conventional evaluation at initial diagnosis. Patient follow-up must be prolonged because systemic relapse can occur as late as 10 years after initial diagnosis. Whether EC relapses of PCNSL have a better prognosis than CNS relapses needs to be assessed in a larger cohort. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Purpose/Objective(s): Primary bone lymphoma (PBL) represents less than 1% of all malignant lymphomas, and 4-5% of all extranodal lymphomas. In this study, we assessed the disease profile, outcome, and prognostic factors in patients with stage I and II PBL.Materials/Methods: Between 1987 and 2008, 116 consecutive patients with PBL treated in 13 RCNinstitutions were included in this study. Inclusion criteriawere: age.17 yrs, PBLin stage I and II, andminimum6months follow-up. The median agewas 51 yrs (range: 17-93).Diagnosticwork-up included plain boneXray (74%of patients), scintigraphy (62%), CT-scan (65%),MRI (58%), PET (18%), and bone-marrow biopsy (84%).All patients had biopsy-proven confirmation of non-Hodgkin's lymphoma (NHL). The histopathological type was predominantly diffuse large B-cell lymphoma (78%) and follicular lymphoma (6%), according to theWHOclassification. One hundred patients had a high-grade, 7 intermediate and 9 low-gradeNHL. Ninety-three patients had anAnn-Arbor stage I, and 23 had a stage II. Seventy-seven patients underwent chemoradiotherapy (CXRT), 12 radiotherapy (RT) alone, 10 chemotherapy alone (CXT), 9 surgery followed by CXRT, 5 surgery followed by CXT, and 2 surgery followed by RT. One patient died before treatment.Median RT dosewas 40Gy (range: 4-60).Themedian number ofCXTcycleswas 6 (range, : 2-8).Median follow-upwas 41months (range: 6-242).Results: Following treatment, the overall response rate was 91% (CR 74%, PR 17%). Local recurrence was observed in 12 (10%) patients, and systemic recurrence in 17 (15%) patients. Causes of death included disease progression in 16, unrelated disease in 6, CXT-related toxicity in 1, and secondary cancer in 2 patients. The 5-yr overall survival (OS), disease-free survival (DFS), lymphoma- specific survival (LSS), and local control (LC) were 76%, 69%, 78%, and 92%, respectively. In univariate analyses (log-rank test), favorable prognostic factors for survival were: age\50 years (p = 0.008), IPI score #1 (p = 0.009), complete response (p\0.001), CXT (p = 0.008), number of CXT cycles $6 (p = 0.007), and RT dose . 40 Gy (p = 0.005). In multivariate analysis age, RT dose, complete response, and absence of B symptoms were independent factors influencing the outcome. There were 3 patients developing grade 3 or more (CTCAE.V3.0) toxicities.Conclusions: This large multicenter study, confirms the relatively good prognosis of early stage PBL, treated with combined CXRT. Local control was excellent, and systemic failure occurred infrequently. A sufficient dose of RT (. 40 Gy) and completeCXT regime (. 6 cycles) were associated with a better outcome. Combined modality appears to be the treatment of choice.Author Disclosure: L. Cai, None; M.C. Stauder, None; Y.J. Zhang, None; P. Poortmans, None; Y.X. Li, None; N. Constantinou, None; J. Thariat, None; S. Kadish, None; M. Ozsahin, None; R.O. Mirimanoff, None.