903 resultados para Audio-visual content classification
Resumo:
BACKGROUND: Due to the increasing importance of quality of life assessments in chronic obstructive pulmonary disease (COPD) patients, and the increased use of the International Classification of Functioning, Disability and Health (ICF) for comparative purposes it is essential to understand the relationship between health-related quality of life (HRQL) instruments and the ICF. OBJECTIVE: The objective of this study was to compare the content of recommended COPD-specific HRQL instruments using the ICF as reference. COPD-specific instruments mentioned in widely accepted guidelines were linked to the ICF using standardized linking rules. The degree of agreement between various health professionals was assessed by calculating the kappa statistic. RESULTS: Eleven instruments were included. They varied strongly in the number of concepts contained and the number of ICF categories used to map these concepts. A total of 548 concepts were identified and linked to 60 different ICF categories. Only the single category 'dyspnea' was covered by all instruments, whilst 21 categories were unique to specific instruments. The relationships of the measures with the ICF were identified. CONCLUSIONS: This study may aid researchers and clinicians to choose the most appropriate instrument for a specific purpose as well as help compare studies that have used different instruments for HRQL assessment.
Resumo:
From Bush’s September 20, 2001 “War on Terror” speech to Congress to President-Elect Barack Obama’s acceptance speech on November 4, 2008, the U.S. Army produced visual recruitment material that addressed the concerns of falling enlistment numbers—due to the prolonged and difficult war in Iraq—with quickly-evolving and compelling rhetorical appeals: from the introduction of an “Army of One” (2001) to “Army Strong” (2006); from messages focused on education and individual identity to high-energy adventure and simulated combat scenarios, distributed through everything from printed posters and music videos to first-person tactical-shooter video games. These highly polished, professional visual appeals introduced to the American public during a time of an unpopular war fought by volunteers provide rich subject matter for research and analysis. This dissertation takes a multidisciplinary approach to the visual media utilized as part of the Army’s recruitment efforts during the War on Terror, focusing on American myths—as defined by Barthes—and how these myths are both revealed and reinforced through design across media platforms. Placing each selection in its historical context, this dissertation analyzes how printed materials changed as the War on Terror continued. It examines the television ad that introduced “Army Strong” to the American public, considering how the combination of moving image, text, and music structure the message and the way we receive it. This dissertation also analyzes the video game America’s Army, focusing on how the interaction of the human player and the computer-generated player combine to enhance the persuasive qualities of the recruitment message. Each chapter discusses how the design of the particular medium facilitates engagement/interactivity of the viewer. The conclusion considers what recruitment material produced during this time period suggests about the persuasive strategies of different media and how they create distinct relationships with their spectators. It also addresses how theoretical frameworks and critical concepts used by a variety of disciplines can be combined to analyze recruitment media utilizing a Selber inspired three literacy framework (functional, critical, rhetorical) and how this framework can contribute to the multimodal classroom by allowing instructors and students to do a comparative analysis of multiple forms of visual media with similar content.
Resumo:
OBJECTIVE: Visual hallucinations are under-reported by patients and are often undiscovered by health professionals. There is no gold standard available to assess hallucinations. Our objective was to develop a reliable, valid, semi-structured interview for identifying and assessing visual hallucinations in older people with eye disease and cognitive impairment. METHODS: We piloted the North-East Visual Hallucinations Interview (NEVHI) in 80 older people with visual and/or cognitive impairment (patient group) and 34 older people without known risks of hallucinations (control group). The informants of 11 patients were interviewed separately. We established face validity, content validity, criterion validity, inter-rater agreement and the internal consistency of the NEVHI, and assessed the factor structure for questions evaluating emotions, cognitions, and behaviours associated with hallucinations. RESULTS: Recurrent visual hallucinations were common in the patient group (68.8%) and absent in controls (0%). The criterion, face and content validities were good and the internal consistency of screening questions for hallucinations was high (Cronbach alpha: 0.71). The inter-rater agreements for simple and complex hallucinations were good (Kappa 0.72 and 0.83, respectively). Four factors associated with experiencing hallucinations (perceived control, pleasantness, distress and awareness) were identified and explained a total variance of 73%. Informants gave more 'don't know answers' than patients throughout the interview (p = 0.008), especially to questions evaluating cognitions and emotions associated with hallucinations (p = 0.02). CONCLUSIONS: NEVHI is a comprehensive assessment tool, helpful to identify the presence of visual hallucinations and to quantify cognitions, emotions and behaviours associated with hallucinations.
Resumo:
BACKGROUND AND PURPOSE: Due to the increasing importance of quality of life assessments in obstructive sleep apnea (OSA) patients and due to an increased use of the International Classification of Functioning, Disability and Health (ICF), for comparative purposes it is essential to understand the relationship between health-related quality of life (HRQOL) instruments and the ICF. The purpose of this study was to compare the content covered by OSA-specific instruments using the ICF. PATIENTS AND METHODS: OSA-specific instruments were identified, including the Calgary Sleep Apnea Quality of Life Index, the Functional Outcomes of Sleep Questionnaire, the Obstructive Sleep Apnea Patient-Oriented Severity Index, and the Quebec Sleep Questionnaire, and linked to the ICF by six health professionals according to standardized guidelines. The degree of agreement between health professionals was calculated by means of the kappa statistic. RESULTS: A total of 308 concepts were identified and linked to 78 different ICF categories; 35 categories of the component body function, one category of the component body structure, 38 categories of the component activities and participation, and four categories of the component environmental factors. Only contents within the chapters mental functions, mobility and social life were addressed by all instruments. Forty-seven categories were covered by only one instrument. CONCLUSION: The ICF proved highly useful for the comparison of HRQOL instruments. This analysis may help researchers and clinicians to choose the most appropriate HRQOL instrument for a specific purpose as well as help to compare study outcomes of studies using different instruments for HRQOL assessment.
Resumo:
In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.
Resumo:
Copyright infringements on the Internet affect all types of media which can be used online: films, computer games, audio books, music, software, etc. For example, according to German studies, 90% of all copyright violations affecting film works take place on the Internet. This storage space is made available to such infringers, as well as to others whose intentions are legal, by hosting providers. To what extent do hosting providers have a duty of care for their contribution to the copyright infringements of third parties, i.e. their users? What duties of care can be reasonably expected of hosting providers to prevent such infringements? These questions have been heavily debated in Germany, and German courts have developed extensive case law. This article seeks to examine these questions by assessing German jurisprudence against its EU law background.
Resumo:
Wireless Multimedia Sensor Networks (WMSNs) promise a wide scope of emerging potential applications in both civilian and military areas, which require visual and audio information to enhance the level of collected information. The transmission of multimedia content requires a minimal video quality level from the user’s perspective. However, links in WMSN communi- cations are typically unreliable, as they often experience fluctuations in quality and weak connectivity, and thus, the routing protocol must evaluate the routes by using end-to-end link quality information to increase the packet delivery ratio. Moreover, the use multiple paths together with key video metrics can enhance the video quality level. In this paper, we propose a video-aware multiple path hierarchical routing protocol for efficient multimedia transmission over WMSN, called video-aware MMtransmission. This protocol finds node-disjoint multiple paths, and implements an end-to-end link quality estimation with minimal over- head to score the paths. Thus, our protocol assures multimedia transmission with Quality of Experience (QoE) and energy-efficiency support. The simula- tion results show the benefits of video-aware MMtransmission for disseminating video content by means of energy-efficiency and QoE analysis.
Resumo:
A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^
Resumo:
Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.
Resumo:
Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications.
Resumo:
BACKGROUND: Higher visual functions can be defined as cognitive processes responsible for object recognition, color and shape perception, and motion detection. People with impaired higher visual functions after unilateral brain lesion are often tested with paper pencil tests, but such tests do not assess the degree of interaction between the healthy brain hemisphere and the impaired one. Hence, visual functions are not tested separately in the contralesional and ipsilesional visual hemifields. METHODS: A new measurement setup, that involves real-time comparisons of shape and size of objects, orientation of lines, speed and direction of moving patterns, in the right or left visual hemifield, has been developed. The setup was implemented in an immersive environment like a hemisphere to take into account the effects of peripheral and central vision, and eventual visual field losses. Due to the non-flat screen of the hemisphere, a distortion algorithm was needed to adapt the projected images to the surface. Several approaches were studied and, based on a comparison between projected images and original ones, the best one was used for the implementation of the test. Fifty-seven healthy volunteers were then tested in a pilot study. A Satisfaction Questionnaire was used to assess the usability of the new measurement setup. RESULTS: The results of the distortion algorithm showed a structural similarity between the warped images and the original ones higher than 97%. The results of the pilot study showed an accuracy in comparing images in the two visual hemifields of 0.18 visual degrees and 0.19 visual degrees for size and shape discrimination, respectively, 2.56° for line orientation, 0.33 visual degrees/s for speed perception and 7.41° for recognition of motion direction. The outcome of the Satisfaction Questionnaire showed a high acceptance of the battery by the participants. CONCLUSIONS: A new method to measure higher visual functions in an immersive environment was presented. The study focused on the usability of the developed battery rather than the performance at the visual tasks. A battery of five subtasks to study the perception of size, shape, orientation, speed and motion direction was developed. The test setup is now ready to be tested in neurological patients.
Resumo:
Platelet concentrates for topical and infiltrative use - commonly termed Platetet-Rich Plasma (PRP) or Platelet-Rich Fibrin (PRF) - are used or tested as surgical adjuvants or regenerative medicine preparations in most medical fields, particularly in sports medicine and orthopaedic surgery. Even if these products offer interesting therapeutic perspectives, their clinical relevance is largely debated, as the literature on the topic is often confused and contradictory. The long history of these products was always associated with confusions, mostly related to the lack of consensual terminology, characterization and classification of the many products that were tested in the last 40 years. The current consensus is based on a simple classification system dividing the many products in 4 main families, based on their fibrin architecture and cell content: Pure Platelet-Rich Plasma (P-PRP), such as the PRGF-Endoret technique; Leukocyte- and Platelet-Rich Plasma (LPRP), such as Biomet GPS system; Pure Platelet-Rich Fibrin (P-PRF), such as Fibrinet; Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Intra-Spin L-PRF. The 4 main families of products present different biological signatures and mechanisms, and obvious differences for clinical applications. This classification serves as a basis for further investigations of the effects of these products. Perspectives of evolutions of this classification and terminology are also discussed, particularly concerning the impact of the cell content, preservation and activation on these products in sports medicine and orthopaedics.
Resumo:
Impaired eye movements have a long history in schizophrenia research and meet the criteria of a reliable biomarker. However, the effects of cognitive load and task difficulty on saccadic latencies (SL) are less understood. Recent studies showed that SL are strongly task dependent: SL are decreased in tasks with higher cognitive demand, and increased in tasks with lower cognitive demand. The present study investigates SL modulation in patients with schizophrenia and their first-degree relatives. A group of 13 patients suffering from ICD-10 schizophrenia, 10 first-degree relatives, and 24 control subjects performed two different types of visual tasks: a color task and a Landolt ring orientation task. We used video-based oculography to measure SL. We found that patients exhibited a similar unspecific SL pattern in the two different tasks, whereas controls and relatives exhibited 20–26% shorter average latencies in the orientation task (higher cognitive demand) compared to the color task (lower cognitive demand). Also, classification performance using support vector machines suggests that relatives should be assigned to the healthy controls and not to the patient group. Therefore, visual processing of different content does not modulate SL in patients with schizophrenia, but modulates SL in the relatives and healthy controls. The results reflect a specific oculomotor attentional dysfunction in patients with schizophrenia that is a potential state marker, possibly caused by impaired top-down disinhibition of the superior colliculus by frontal/prefrontal areas such as the frontal eye fields.
Resumo:
BACKGROUND Treatment of displaced tarsal navicular body fractures usually consists of open reduction and internal fixation. However, there is little literature reporting results of this treatment and correlation to fracture severity. METHODS We report the results of 24 patients treated in our institution over a 12-year period. Primary outcome measurements were Visual-Analogue-Scale Foot and Ankle score (VAS-FA), AOFAS midfoot score, and talonavicular osteoarthritis at final follow-up. According to a new classification system reflecting talonavicular joint damage, 2-part fractures were classified as type I, multifragmentary fractures as type II, and fractures with talonavicular joint dislocation and/or concomitant talar head fractures as type III. Spearman's coefficients tested this classification's correlation with the primary outcome measurements. Mean patient age was 33 (range 16-61) years and mean follow-up duration 73 (range 24-159) months. RESULTS Average VAS-FA score was 74.7 (standard deviation [SD] 16.9), and average AOFAS midfoot score was 83.8 (SD = 12.8). Final radiographs showed no talonavicular arthritis in 5 patients, grade 1 in 7, grade 2 in 3, grade 3 in 6, and grade 4 in 1 patient. Two patients had secondary or spontaneous talonavicular fusion. Spearman coefficients showed strong correlation of the classification system with VAS-FA score (r = -0.663, P < .005) and talonavicular arthritis (r = 0.600, P = .003), and moderate correlation with AOFAS score (r = -.509, P = .011). CONCLUSION At midterm follow-up, open reduction and internal fixation of navicular body fractures led to good clinical outcome but was closely related to fracture severity. A new classification based on the degree of talonavicular joint damage showed close correlation to clinical and radiologic outcome. LEVEL OF EVIDENCE Level IV, retrospective case series.