826 resultados para Astronomía.
Resumo:
The discovery of very slow pulsations (Pspin =5560 s) has solved the long-standing question of the nature of the compact object in the high-mass X-ray binary 4U 2206+54 but has posed new ones. According to spin evolutionary models in close binary systems, such slow pulsations require a neutron star magnetic field strength larger than the quantum critical value of 4.4 × 1013 G, suggesting the presence of a magnetar. We present the first XMM–Newton observations of 4U 2206+54 and investigate its spin evolution. We find that the observed spin-down rate agrees with the magnetar scenario. We analyse Integral Spacecraft Gamma-Ray Imager (ISGRI)/INTErnational Gamma-RAy Laboratory (INTEGRAL) observations of 4U 2206+54 to search for the previously suggested cyclotron resonance scattering feature at ∼30 keV. We do not find a clear indication of the presence of the line, although certain spectra display shallow dips, not always at 30 keV. The association of these dips with a cyclotron line is very dubious because of its apparent transient nature. We also investigate the energy spectrum of 4U 2206+54 in the energy range 0.3–10 keV with unprecedented detail and report for the first time the detection of very weak 6.5 keV fluorescence iron lines. The photoelectric absorption is consistent with the interstellar value, indicating very small amount of local matter, which would explain the weakness of the florescence lines. The lack of matter locally to the source may be the consequence of the relatively large orbital separation of the two components of the binary. The wind would be too tenuous in the vicinity of the neutron star.
Resumo:
Central compact objects (CCOs) are X-ray sources lying close to the centre of supernova remnants, with inferred values of the surface magnetic fields significantly lower (≲1011 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and re-emergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 10−4–10−3 M⊙ over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field re-emerges on a typical time-scale of 1–100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as an alternative to the antimagnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.
Resumo:
The lack of isolated X-ray pulsars with spin periods longer than 12 s raises the question of where the population of evolved high-magnetic-field neutron stars has gone. Unlike canonical radiopulsars, X-ray pulsars are not subject to physical limits to the emission mechanism nor observational biases against the detection of sources with longer periods. Here we show that a highly resistive layer in the innermost part of the crust of neutron stars naturally limits the spin period to a maximum value of about 10–20 s. This highly resistive layer is expected if the inner crust is amorphous and heterogeneous in nuclear charge, possibly owing to the existence of a nuclear ‘pasta’ phase. Our findings suggest that the maximum period of isolated X-ray pulsars may be the first observational evidence for an amorphous inner crust, whose properties can be further constrained by future X-ray timing missions combined with more detailed models.
Resumo:
We report near-infrared radial velocity (RV) measurements of the recently identified donor star in the high mass X-ray binary (HMXB) system OAO 1657−415 obtained in the H band using ISAAC on the Very Large Telescope. Cross-correlation methods were employed to construct a RV curve with a semi-amplitude of 22.1 ± 3.5 km s−1. Combined with other measured parameters of this system it provides a dynamically determined neutron star (NS) mass of 1.42 ± 0.26 M⊙ and a mass of 14.3 ± 0.8 M⊙ for the Ofpe/WN9 highly evolved donor star. OAO 1657−415 is an eclipsing HMXB pulsar with the largest eccentricity and orbital period of any within its class. Of the 10 known eclipsing X-ray binary pulsars OAO 1657−415 becomes the ninth with a dynamically determined NS mass solution and only the second in an eccentric system. Furthermore, the donor star in OAO 1657−415 is much more highly evolved than the majority of the supergiant donors in other HMXBs, joining a small but growing list of HMXBs donors with extensive hydrogen depleted atmospheres. Considering the evolutionary development of OAO 1657−415, we have estimated the binding energy of the envelope of the mass donor and find that there is insufficient energy for the removal of the donor’s envelope via spiral-in, ruling out a common envelope evolutionary scenario. With its non-zero eccentricity and relatively large orbital period the identification of a definitive evolutionary pathway for OAO 1657−415 remains problematic, we conclude by proposing two scenarios which may account for OAO 1657−415 current orbital configuration.
Resumo:
In X-ray binaries, rapid variability in X-ray flux of greater than an order of magnitude on time-scales of a day or less appears to be a signature of wind accretion from a supergiant companion. When the variability takes the form of rare, brief, bright outbursts with only faint emission between them, the systems are called supergiant fast X-ray transients (SFXTs). We present data from twice-weekly scans of the Galactic bulge by the Rossi X-ray Timing Explorer that allow us to compare the behaviour of known SFXTs and possible SFXT candidates with the persistently bright supergiant X-ray binary 4U 1700−377. We independently confirm the orbital periods reported by other groups for SFXTs SAX J1818.6−1703 and IGR J17544−2619. The new data do not independently reproduce the orbital period reported for XTE J1739−302, but slightly improve the significance of the original result when the data are combined. The bulge source XTE J1743−363 shows a combination of fast variability and a long-term decline in activity, the latter behaviour not being characteristic of supergiant X-ray binaries. A far-red spectrum of the companion suggests that it is a symbiotic neutron star binary rather than a high-mass binary, and the reddest known of this class: the spectral type is approximately M8 III.
Resumo:
We report on the long-term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3–1606 (SGR 1822–1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3–1606's radio-pulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative P = 8.3(2)×10−14 s s−1, which implies an inferred dipolar surface magnetic field of B sime 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3–1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3–1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and B tor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr.
Resumo:
The availability of a large amount of observational data recently collected from magnetar outbursts is now calling for a complete theoretical study of outburst characteristics. In this Letter (the first of a series dedicated to modeling magnetar outbursts), we tackle the long-standing open issue of whether or not short bursts and glitches are always connected to long-term radiative outbursts. We show that the recent detection of short bursts and glitches seemingly unconnected to outbursts is only misleading our understanding of these events. We show that, in the framework of the starquake model, neutrino emission processes in the magnetar crust limit the temperature, and therefore the luminosity. This natural limit to the maximum luminosity makes outbursts associated with bright persistent magnetars barely detectable. These events are simply seen as a small luminosity increase over the already bright quiescent state, followed by a fast return to quiescence. In particular, this is the case for 1RXS J1708–4009, 1E 1841–045, SGR 1806–20, and other bright persistent magnetars. On the other hand, a similar event (with the same energetics) in a fainter source will drive a more extreme luminosity variation and longer cooling time, as for sources such as XTE J1810–197, 1E 1547–5408, and SGR 1627–41. We conclude that the non-detection of large radiative outbursts in connection with glitches and bursts from bright persistent magnetars is not surprising per se, nor does it need any revision of the glitches and burst mechanisms as explained by current theoretical models.
Resumo:
SGR 0418+5729 is a transient soft gamma-ray repeater which underwent a major outburst in 2009 June, during which the emission of short bursts was observed. Its properties appeared quite typical of other sources of the same class until long-term X-ray monitoring failed to detect any period derivative. The present upper limit on P implies that the surface dipole field is Bp lsim 7.5 × 1012 G, well below those measured in other soft gamma-ray repeaters (SGRs) and in the Anomalous X-ray Pulsars (AXPs), a group of similar sources. Both SGRs and AXPs are currently believed to be powered by ultra-magnetized neutron stars (magnetars, Bp ≈ 1014-1015 G). SGR 0418+5729 hardly seems to fit in such a picture. We show that the magneto-rotational properties of SGR 0418+5729 can be reproduced if this is an aged magnetar, ≈1 Myr old, which experienced substantial field decay. The large initial toroidal component of the internal field required to match the observed properties of SGR 0418+5729 ensures that crustal fractures, and hence bursting activity, can still occur at the present time. The thermal spectrum observed during the outburst decay is compatible with the predictions of a resonant Compton scattering model (as in other SGRs/AXPs) if the field is low and the magnetospheric twist is moderate.
Resumo:
We report on an ~63 ks Chandra observation of the X-ray transient Swift J195509.6+261406 discovered as the afterglow of what was first believed to be a long-duration gamma-ray burst (GRB 070610). The outburst of this source was characterized by unique optical flares on timescales of second or less, morphologically similar to the short X-ray bursts usually observed from magnetars. Our Chandra observation was performed ~2 years after the discovery of the optical and X-ray flaring activity of this source, catching it in its quiescent state. We derive stringent upper limits on the quiescent emission of Swift J195509.6+261406, which argues against the possibility of this object being a typical magnetar. Our limits show that the most viable interpretation on the nature of this peculiar bursting source is a binary system hosting a black hole or a neutron star with a low-mass companion star (<0.12 M ☉) and with an orbital period smaller than a few hours.
Resumo:
In a former publication, we have analyzed the transient neutron star X-ray binary GRO J1008–57 using all available RXTE-, Swift-, and Suzaku-data. As we have found, the source’s spectral components, i.e., a power-law with high exponential cutoff and a black-body, are strongly correlated with the hard X-ray flux (15–50 keV). We update the analytical description of these dependence, including a change in the photon index behaviour from a flat to a logarithmic function. The flux, where the change occurs, is consistent with the onset of the black-body emission. Thus, a change of the accretion state always occurs in GRO J1008–57 at a particular flux level.
Resumo:
We study the outburst of the newly discovered X-ray transient 3XMMJ185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of ˙ P <1.4×10−13 s s−1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of Bdip < 4.1×1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third “low-B” magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3−1606. We have also obtained an upper limit to the quiescent luminosity (<4×1033 erg s−1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.
Resumo:
Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars1, 2, 3 (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions2, 3, 4. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification6 and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe ii profiles from the equatorial disk, and a refined Be classification (to that of a B1.5–B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10−7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.
Resumo:
Las estrellas masivas desempeñan un papel fundamental en la evolución de las Galaxias, siendo la fuente primordial de generación y dispersión de elementos como el oxígeno, silicio, etc., en el medio interestelar. La masa de la estrella es el parámetro más determinante en los procesos de evolución de la estrella, pero su determinación no siempre es posible sin el uso de calibraciones externas. Afortunadamente, la naturaleza nos ofrece las estrellas binarias como laboratorios astrofísicos, donde es posible la determinación de las masas de sus componentes a partir del movimiento orbital de las mismas. En esta tesis se presentan el análisis espectroscópico y fotométrico de cuatros sistemas binarios cuyas componentes son estrellas masivas.
Resumo:
We report on the quiescent state of the soft gamma repeater SGR 0501+4516 observed by XMM–Newton on 2009 August 30. The source exhibits an absorbed flux ∼75 times lower than that measured at the peak of the 2008 outburst, and a rather soft spectrum, with the same value of the blackbody temperature observed with ROSAT back in 1992. This new observation is put into the context of all existing X-ray data since its discovery in 2008 August, allowing us to complete the study of the timing and spectral evolution of the source from outburst until its quiescent state. The set of deep XMM–Newton observations performed during the few years time-scale of its outburst allows us to monitor the spectral characteristics of this magnetar as a function of its rotational period, and their evolution along these years. After the first ∼10 d, the initially hot and bright surface spot progressively cooled down during the decay. We discuss the behaviour of this magnetar in the context of its simulated secular evolution, inferring a plausible dipolar field at birth of 3 × 1014 G, and a current (magnetothermal) age of ∼10 kyr.
Resumo:
We present analysis of 100 ks contiguous XMM-Newton data of the prototypical wind accretor Vela X-1. The observation covered eclipse egress between orbital phases 0.134 and 0.265, during which a giant flare took place, enabling us to study the spectral properties both outside and during the flare. This giant flare with a peak luminosity of 3.92+0.42-0.09 × 1037 erg s-1 allows estimates of the physical parameters of the accreted structure with a mass of ~1021 g. We have been able to model several contributions to the observed spectrum with a phenomenological model formed by three absorbed power laws plus three emission lines. After analysing the variations with orbital phase of the column density of each component, as well as those in the Fe and Ni fluorescence lines, we provide a physical interpretation for each spectral component. Meanwhile, the first two components are two aspects of the principal accretion component from the surface of the neutron star, the third component seems to be the X-ray light echo formed in the stellar wind of the companion.