900 resultados para Assembly vectors
Resumo:
The ECMWF full-physics and dry singular vector (SV) packages, using a dry energy norm and a 1-day optimization time, are applied to four high impact European cyclones of recent years that were almost universally badly forecast in the short range. It is shown that these full-physics SVs are much more relevant to severe cyclonic development than those based on dry dynamics plus boundary layer alone. The crucial extra ingredient is the representation of large-scale latent heat release. The severe winter storms all have a long, nearly straight region of high baroclinicity stretching across the Atlantic towards Europe, with a tongue of very high moisture content on its equatorward flank. In each case some of the final-time top SV structures pick out the region of the actual storm. The initial structures were generally located in the mid- to low troposphere. Forecasts based on initial conditions perturbed by moist SVs with opposite signs and various amplitudes show the range of possible 1-day outcomes for reasonable magnitudes of forecast error. In each case one of the perturbation structures gave a forecast very much closer to the actual storm than the control forecast. Deductions are made about the predictability of high-impact extratropical cyclone events. Implications are drawn for the short-range forecast problem and suggestions made for one practicable way to approach short-range ensemble forecasting. Copyright © 2005 Royal Meteorological Society.
Resumo:
An investigation is made of the impact of a full linearized physical (moist) parameterization package on extratropical singular vectors (SVs) using the ECMWF integrated forecasting system (IFS). Comparison is made for one particular period with a dry physical package including only vertical diffusion and surface drag. The crucial extra ingredient in the full package is found to be the large-scale latent heat release. Consistent with basic theory, its inclusion results in a shift to smaller horizontal scales and enhanced growth for the SVs. Whereas, for the dry SVs, T42 resolution is sufficient, the moist SVs require T63 to resolve their structure and growth. A 24-h optimization time appears to be appropriate for the moist SVs because of the larger growth of moist SVs compared with dry SVs. Like dry SVs, moist SVs tend to occur in regions of high baroclinicity, but their location is also influenced by the availability of moisture. The most rapidly growing SVs appear to enhance or reduce large-scale rain in regions ahead of major cold fronts. The enhancement occurs in and ahead of a cyclonic perturbation and the reduction in and ahead of an anticyclonic perturbation. Most of the moist SVs for this situation are slightly modified versions of the dry SVs. However, some occur in new locations and have particularly confined structures. The most rapidly growing SV is shown to exhibit quite linear behavior in the nonlinear model as it grows from 0.5 to 12 hPa in 1 day. For 5 times this amplitude the structure is similar but the growth is about half as the perturbation damps a potential vorticity (PV) trough or produces a cutoff, depending on its sign.
Resumo:
Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.
Resumo:
Pseudoacid chlorides of 2,5-bis(4-fluorobenzoyl) terephthalic acid and 4,6-bis(4-fluorobenzoyl) isophthalic acid condense with primary amines to afford diastereomeric bis(hydroxyindolinone)s in good isolated yields and with diamines to give high molecular weight poly(hydroxyindolinone)s. Bis-N-pyrenemethyl bis(hydroxyindolinone)s assemble, even in dipolar solvents such as DMSO, with macrocyclic diimide-sulfones to give [3]pseudorotaxanes stabilized by electronically complementary aromatic π−π-stacking and shape-complementary van der Waals interactions.
Resumo:
Despite decades of research, it remains controversial whether ecological communities converge towards a common structure determined by environmental conditions irrespective of assembly history. Here, we show experimentally that the answer depends on the level of community organization considered. In a 9-year grassland experiment, we manipulated initial plant composition on abandoned arable land and subsequently allowed natural colonization. Initial compositional variation caused plant communities to remain divergent in species identities, even though these same communities converged strongly in species traits. This contrast between species divergence and trait convergence could not be explained by dispersal limitation or community neutrality alone. Our results show that the simultaneous operation of trait-based assembly rules and species-level priority effects drives community assembly, making it both deterministic and historically contingent, but at different levels of community organization.
Resumo:
The assembly of sarcomeric proteins into the highly organized structure of the sarcomere is an ordered and complex process involving an array of structural and associated proteins. The sarcomere has shown itself to be considerably more complex than ever envisaged and may be considered one of the most complex macromolecular assemblies in biology. Studies over the last decade have helped to put a new face on the sarcomere, and, as such, the sarcomere is being redefined as a dynamic network of proteins capable of generating force and signalling with other cellular compartments and metabolic enzymes capable of controlling many facets of striated myocyte biology.
Resumo:
Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.
Resumo:
The expression of proteins using recombinant baculoviruses is a mature and widely used technology. However, some aspects of the technology continue to detract from high throughput use and the basis of the final observed expression level is poorly understood. Here, we describe the design and use of a set of vectors developed around a unified cloning strategy that allow parallel expression of target proteins in the baculovirus system as N-terminal or C-terminal fusions. Using several protein kinases as tests we found that amino-terminal fusion to maltose binding protein rescued expression of the poorly expressed human kinase Cot but had only a marginal effect on expression of a well-expressed kinase IKK-2. In addition, MBP fusion proteins were found to be secreted from the expressing cell. Use of a carboxyl-terminal GFP tagging vector showed that fluorescence measurement paralleled expression level and was a convenient readout in the context of insect cell expression, an observation that was further supported with additional non-kinase targets. The expression of the target proteins using the same vectors in vitro showed that differences in expression level were wholly dependent on the environment of the expressing cell and an investigation of the time course of expression showed it could affect substantially the observed expression level for poorly but not well-expressed proteins. Our vector suite approach shows that rapid expression survey can be achieved within the baculovirus system and in addition, goes some way to identifying the underlying basis of the expression level obtained. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
A series of promoter probe vectors for use in Gram-negative bacteria has been made in two broad-host-range vectors, pOT (pBBR replicon) and pJP2 (incP replicon). Reporter fusions can be made to gfpUV, gfprnut3.1, unstable gfpmut3.1 variants (LAA, LVA, AAV and ASV), gfp+, dsRed2, dsRedT3, dsRedT4, mRFP1, gusA or lacZ. The two vector families, pOT and pJP2, are compatible with one another and share the same polylinker for facile interchange of promoter regions. Vectors based on pJP2 have the advantage of being ultra-stable in the environment due to the presence of the parABCDE genes. As a confirmation of their usefulness, the dicarboxylic acid transport system promoter (dctA(p)) was cloned into a pOT (pRU1097)- and a pJP2 (pRU1156)-based vector and shown to be expressed by Rhizobium leguminosarum in infection threads of vetch. This indicates the presence of dicarboxylates at the earliest stages of nodule formation.
Resumo:
Periplasmic chaperone/usher machineries are used for assembly of filamentous adhesion organelles of Gram-negative pathogens in a process that has been suggested to be driven by folding energy. Structures of mutant chaperone-subunit complexes revealed a final folding transition (condensation of the subunit hydrophobic core) on the release of organelle subunit from the chaperone-subunit pre-assembly complex and incorporation into the final fibre structure. However, in view of the large interface between chaperone and subunit in the pre-assembly complex and the reported stability of this complex, it is difficult to understand how final folding could release sufficient energy to drive assembly. In the present paper, we show the X-ray structure for a native chaperone-fibre complex that, together with thermodynamic data, shows that the final folding step is indeed an essential component of the assembly process. We show that completion of the hydrophobic core and incorporation into the fibre results in an exceptionally stable module, whereas the chaperone-subunit preassembly complex is greatly destabilized by the high-energy conformation of the bound subunit. This difference in stabilities creates a free energy potential that drives fibre formation.
Resumo:
The assembly of HIV is relatively poorly investigated when compared with the process of virus entry. Yet a detailed understanding of the mechanism of assembly is fundamental to our knowledge of the complete life cycle of this virus and also has the potential to inform the development of new antiviral strategies. The repeated multiple interaction of the basic structural unit, Gag, might first appear to be little more than concentration dependent self-assembly but the precise mechanisms emerging for HIV are far from simple. Gag interacts not only with itself but also with host cell lipids and proteins in an ordered and stepwise manner. It binds both the genomic RNA and the virus envelope protein and must do this at an appropriate time and place within the infected cell. The assembled virus particle must successfully release from the cell surface and, whilst being robust enough for transmission between hosts, must nonetheless be primed for rapid disassembly when infection occurs. Our current understanding of these processes and the domains of Gag involved at each stage is the subject of this review. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Expression of the murine leukaemia virus (MLV) major Gag antigen p65(Gag) using the baculovirus expression system leads to efficient assembly and release of virus-like particles (VLP) representative of immature MLV. Expression of P180(Gag-Pol), facilitated normally in mammalian cells by readthrough of the p65(Gag) termination codon, also occurs efficiently in insect cells to provide a source of the MLV protease and a pattern of p65(Gag) processing similar to that observed in mammalian cells. VLP release from P180(Gag-Pol) expressing cells however remains essentially immature with disproportionate levels of the uncleaved p65(Gag) precursor when compared to the intracellular Gag profile. Changing the p65(Gag) termination codon altered the level of p65(Gag) and p180(Gag-Pol) within expressing cells but did not alter the pattern of released VLP, which remained immature. Coexpression of p65(Gag) with a fixed readthrough p180(Gag-Pol) also led to only immature VLP release despite high intracellular protease levels. Our data suggest a mechanism that preferentially selects uncleaved p65(Gag) for the assembly of MLV in this heterologous expression system and implies that, in addition to their relative levels, active sorting of the correct p65(Gag) and p180(Gag-Pol) ratios may occur in producer cells. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Recent biochemical studies have identified high molecular complexes of the HIV Gag precursor in the cytosol of infected cells. Using immunoelectron microscopy we studied the time course of the synthesis and assembly of a HIV Gag precursor protein (pr55gag) in Sf9 cells infected with recombinant baculovirus expressing the HIV gag gene. We also immunolabeled for pr55gag human T4 cells acutely or chronically infected with HIV-1. In Sf9 cells, the time course study showed that the first Gag protein appeared in the cytoplasm at 28-30 h p.i. and that budding started 6-8 h later. Colloidal gold particles, used to visualize the Gag protein, were first scattered randomly throughout the cytoplasm, but soon clusters representing 100 to 1000 copies of pr55gag were also observed. By contrast, in cells with budding or released virus-like particles the cytoplasm was virtually free of gold particles while the released virus-like particles were heavily labeled. Statistical analysis showed that between 80 and 90% of the gold particles in the cytoplasm were seen as singles, as doublets, or in small groups of up to five particles probably representing small oligomers. Clusters of gold particles were also observed in acutely infected lymphocytes as well as in multinuclear cells of chronically infected cultures of T4 cells. In a few cases small aggregates of gold particles were found in the nuclei of T4 lymphocytes. These observations suggest that the Gag polyprotein forms small oligomers in the cytoplasm of expressing cells but that assembly into multimeric complexes takes place predominantly at the plasma membrane. Large accumulations of Gag protein in the cytoplasm may represent misfolded molecules destined for degradation.