935 resultados para Ashtamudi Estuary
Resumo:
The Princeton Ocean Model is used to study the circulation in the Pear River Estuary (PRE) and the adjacent coastal waters in the winter and summer seasons. Wong et al. [2003] compares the simulation results with the in situ measurements collected during the Pearl River Estuary Pollution Project (PREPP). In this paper, sensitivity experiments are carried out to examine the plume and the associated frontal dynamics in response to seasonal discharges and monsoon winds. During the winter, convergence between the seaward spreading plume water and the saline coastal water sets up a salinity front that aligns from the northeast to the southwest inside the PRE. During the summer the plume water fills the PRE at the surface and spreads eastward in the coastal waters in response to the prevailing southwesterly monsoon. The overall alignment of the plume is from the northwest to the southeast. The subsurface front is similar to that in the winter and summer except that the summer front is closer to the mouth and the winter front closer to the head of the estuary. Inside the PRE, bottom flows are always toward the head of the estuary, attributed to the density gradient associated with the plume front. In contrast, bottom flows in the shelf change from offshore in winter to onshore in summer, reflecting respectively the wintertime downwelling and summertime upwelling. Wind also plays an essential role in controlling the plume at the surface. An easterly wind drives the plume westward regardless winter or summer. The eastward spreading of the plume during the summer can be attributed to the southerly component of the wind. On the other hand, the surface area of the plume is positively proportional to the amount of discharge.
Resumo:
Fifteen species of pelagic fishes were collected in 156 gill net sets at eight locations in the Sheepscot River-Back River estuary, Wiscasset, Maine, June 1970 through December 1971. Highest catches occurred June through August. Only the rainbow smelt is a year-round resident. Differences in abundance in space and time are apparently related to temperature. During the summer, alewives, blueback herring, and Atlantic menhaden were most abundant in the relatively warm Back River estuary, while Atlantic herring, Atlantic mackerel, and spiny dogfish were most abundant in the more oceanic Sheepscot River estuary. Prolonged near-freezing temperatures apparently limit the time pelagic fishes spend in the estuary and limit the number of species which can inhabit it. It is hypothesized that the distribution of pelagic species which exhibited preferences for colder water, such as Atlantic herring, would be most affected by artificial warming of the surface waters of the Back River estuary, if a new atomic powered generating plant were allowed to discharge heated effluent directly into it.
(Table 5) Concentrations of dissolved nutrients in Button Bay and the Churchill River estuary region
Resumo:
High-frequency data collected continuously over a multiyear time frame are required for investigating the various agents that drive ecological and hydrodynamic processes in estuaries. Here, we present water quality and current in-situ observations from a fixed monitoring station operating from 2008 to 2014 in the lower Guadiana Estuary, southern Portugal (37°11.30' N, 7°24.67' W). The data were recorded by a multi-parametric probe providing hourly records (temperature, salinity, chlorophyll, dissolved oxygen, turbidity, and pH) at a water depth of ~1 m, and by a bottom-mounted acoustic Doppler current profiler measuring the pressure, near-bottom temperature, and flow velocity through the water column every 15 min. The time-series data, in particular the probe ones, present substantial gaps arising from equipment failure and maintenance, which are ineluctable with this type of observations in harsh environments. However, prolonged (months-long) periods of multi-parametric observations during contrasted external forcing conditions are available. The raw data are reported together with flags indicating the quality status of each record. River discharge data from two hydrographic stations located near the estuary head are also provided to support data analysis and interpretation.