938 resultados para Ash (Plants)
Resumo:
Selostus: Tuhkapitoisuuden vaikutus lihaluujauhon reaktiivisen lysiinin hyväksikäyttöön lihasioilla
Resumo:
Palaeobotany applied to freshwater plants is an emerging field of palaeontology. Hydrophytic plants reveal evolutionary trends of their own, clearly distinct from those of the terrestrial and marine flora. During the Precambrian, two groups stand out in the fossil record of freshwater plants: the Cyanobacteria (stromatolites) in benthic environments and the prasinophytes (leiosphaeridian acritarchs) in transitional planktonic environments. During the Palaeozoic, green algae (Chlorococcales, Zygnematales, charophytes and some extinct groups) radiated and developed the widest range of morphostructural patterns known for these groups. Between the Permian and Early Cretaceous, charophytes dominated macrophytic associations, with the consequence that over tens of millions of years, freshwater flora bypassed the dominance of vascular plants on land. During the Early Cretaceous, global extension of the freshwater environments is associated with diversification of the flora, including new charophyte families and the appearance of aquatic angiosperms and ferns for the first time. Mesozoic planktonic assemblages retained their ancestral composition that was dominated by coenobial Chlorococcales, until the appearance of freshwater dinoflagellates in the Early Cretaceous. In the Late Cretaceous, freshwater angiosperms dominated almost all macrophytic communities worldwide. The Tertiary was characterised by the diversification of additional angiosperm and aquatic fern lineages, which resulted in the first differentiation of aquatic plant biogeoprovinces. Phytoplankton also diversified during the Eocene with the development of freshwater diatoms and chrysophytes. Diatoms, which were exclusively marine during tens of millions of years, were dominant over the Chlorococcales during Neogene and in later assemblages. During the Quaternary, aquatic plant communities suffered from the effects of eutrophication, paludification and acidification, which were the result of the combined impact of glaciation and anthropogenic disturbance.
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
With the support of the Iowa Fly Ash Affiliates, research on reclaimed fly ash for use as a construction material has been ongoing since 1991. The material exhibits engineering properties similar to those of soft limestone or sandstone and a lightweight aggregate. It is unique in that it is rich in calcium, silica, and aluminum and exhibits pozzolanic properties (i.e. gains strength over time) when used untreated or when a calcium activator is added. Reclaimed Class C fly ashes have been successfully used as a base material on a variety of construction projects in southern and western Iowa. A pavement design guide has been developed with the support of the Iowa Fly Ash Affiliates. Soils in Iowa generally rate fair to poor as subgrade soils for paving projects. This is especially true in the southern quarter of the state and for many areas of eastern and western Iowa. Many of the soil types encountered for highway projects are unsuitable soils under the current Iowa DOT specifications. The bulk of the remaining soils are Class 10 soils. Select soils for use directly under the pavement are often difficult to find on a project, and in many instances are economically unavailable. This was the case for a 4.43-mile grading (STP-S- 90(22)-SE-90) and paving project in Wapello County. The project begins at the Alliant Utilities generating station in Chillicothe, Iowa, and runs west to the Monroe-Wapello county line. This road carries a significant amount of truck traffic hauling coal from the generating station to the Cargill corn processing plant in Eddyville, Iowa. The proposed 10-inch Portland Cement Concrete (PCC) pavement was for construction directly on a Class 10 soil subgrade, which is not a desirable condition if other alternatives are available. Wapello County Engineer Wendell Folkerts supported the use of reclaimed fly ash for a portion of the project. Construction of about three miles of the project was accomplished using 10 inches of reclaimed fly ash as a select fill beneath the PCC slab. The remaining mile was constructed according to the original design to be used as a control section for performance monitoring. The project was graded during the summers of 1998 and 1999. Paving was completed in the fall of 1999. This report presents the results of design considerations and laboratory and field testing results during construction. Recommendations for use of reclaimed fly ash as a select fill are also presented.
Resumo:
INTRODUCTION: Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers׳ health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses are present in wastewater and, due to their small size, they should become aerosolized. Two in particular, the norovirus and the adenovirus, are extremely widespread and are the major causes of infectious gastrointestinal diseases reported around the world. The third one, hepatitis E virus, has an emerging status. GOAL AND METHODS: This study׳s objectives were to detect and quantify the presence and concentrations of 3 different viruses (adenovirus, norovirus and the hepatitis E virus) in air samples from 31 WWTPs by using quantitative polymerase chain reaction (qPCR) during two different seasons and two consecutive years. RESULTS: Adenovirus was present in 100% of summer WWTP samples and 97% of winter samples. The highest airborne concentration measured was 2.27×10(6) genome equivalent/m(3) and, on average, these were higher in summer than in winter. Norovirus was detected in only 3 of the 123 air samples, and the hepatitis E virus was not detected. CONCLUSIONS: Concentrations of potentially pathogenic viral particles in WWTP air are non-negligible and could partly explain the work-related gastrointestinal symptoms often reported in employees in this sector.
Resumo:
Tiivistelmä: ravinteiden huuhtoutuminen tuhka- ja PK-lannoitetusta turpeesta
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
Report on applying agreed-upon procedures to the Villisca Municipal Power Plant’s accounting procedures, cash and investment balances and compliance with Code of Iowa requirements for the period February 1, 2007 through December 31, 2010
Resumo:
The monitoring of heavy metal concentrations in areas under intensive agriculture is essential for the agricultural sustainability and food safety. This paper evaluates the total contents of heavy metals in soils and mango trees in orchards of different ages (6, 7, 8, 9, 10, 11, 14, 16, 17, 19, and 26 years) in Petrolina, Pernambuco, Brazil. Soil samples were taken from the layers 0-20 cm and 20-40 cm, and mango leaves were collected in the growth stage. Areas of native vegetation (Caatinga) adjacent to the cultivated areas were used for comparison. The total concentrations of heavy metals (Cu, Cr, Fe, Zn, Mn, Ni, and Pb) were determined in soils and leaves. In general, mango cultivation led to Cu and Zn accumulation in the soil surface and to a reduction in the contents of Ni, Pb, Mn, and Fe in surface and subsurface. Since contamination by Cu, Zn, and Cr was detected, these areas must be monitored to prevent negative environmental impacts. For instance, the presence of Cr in mango tree leaves indicates the need to investigate the source of the element in these orchards. The management strategies of the different companies led to deficiency or excess of some metals in the evaluated areas. However, the Fe and Mn levels were adequate for the mineral nutrition of mango in all areas.
Resumo:
Aluminum (Al) toxicity is one of the most limiting factors for productivity. This research was carried out to assess the influence of Al nutrient solution on plant height, dry weight and morphoanatomical alterations in corn (Zea mays L.) roots and leaves. The experiment was conducted in a greenhouse with five treatments consisting of Al doses (0, 25, 75, 150, and 300 µmol L-1) and six replications. The solutions were constantly aerated, and the pH was initially adjusted to 4.3. The shoot dry matter, root dry matter and plant height decreased significantly with increasing Al concentrations. Compared to the control plants, it was observed that the root growth of corn plants in Al solutions was inhibited, there were fewer lateral roots and the development of the root system reduced. The leaf anatomy of plants grown in solutions containing 75 and 300 µmol L-1 Al differed in few aspects from the control plants. The leaf sheaths of the plants exposed to Al had a uniseriate epidermis coated with a thin cuticle layer, and the cells of both the epidermis and the cortex were less developed. In the vascular bundle, the metaxylem and protoxylem had no secondary walls, and the diameter of both was much smaller than of the control plants.
Resumo:
Seeds of common bean (Phaseolus vulgaris) with high molybdenum (Mo) concentration can supply Mo plant demands, but to date no studies have concomitantly evaluated the effects of Mo-enriched seeds on plants inoculated with rhizobia or treated with N fertilizer. This work evaluated the effects of seed Mo on growth and N acquisition of bean plants fertilized either by symbiotic N or mineral N, by measuring the activities of nitrogenase and nitrate reductase and the contribution of biological N2 fixation at different growth stages. Seeds enriched or not with Mo were sown with two N sources (inoculated with rhizobia or fertilized with N), in pots with 10 kg of soil. In experiment 1, an additional treatment consisted of Mo-enriched seeds with Mo applied to the soil. In experiment 2, the contribution of N2 fixation was estimated by 15N isotope dilution. Common bean plants grown from seeds with high Mo concentration flowered one day earlier. Seeds with high Mo concentration increased the leaf area, shoot mass and N accumulation, with both N sources. The absence of effects of Mo application to the soil indicated that Mo contents of Mo-enriched seeds were sufficient for plant growth. Seeds enriched with Mo increased nitrogenase activity at the vegetative stage of inoculated plants, and nitrate reductase activity at late growth stages with both N sources. The contribution of N2 fixation was 17 and 61 % in plants originating from low- or high-Mo seeds, respectively. The results demonstrate the benefits of sowing Mo-enriched seeds on growth and N nutrition of bean plants inoculated with rhizobia or fertilized with mineral N fertilizer.
Resumo:
Synthesis of polyhydroxyalkanoates (PHAs) in crop is viewed as an attractive approach for the production of this family of biodegradable plastics in large quantities and at low costs. Synthesisof PHAs containing various monomers has so far been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modifies to achieve this, including the isoprenois pathway, the fatty acid biosynthetic pathway, and the fatty acid
Resumo:
Efficient analytical methods for the quantification of plant-available Zn contained in mineral fertilizers and industrial by-products are fundamental for the control and marketing of these inputs. In this sense, there are some doubts on the part of the scientific community as well as of the fertilizer production sector, whether the extractor requested by the government (Normative Instruction No. 28, called 2nd extractor), which is citric acid 2 % (2 % CA) (Brasil, 2007b), is effective in predicting the plant availability of Zn via mineral fertilizers and about the agronomic significance of the required minimal solubility of 60 % compared to the total content (HCl) (Brasil, 2007a). The purpose of this study was to evaluate the alternative extractors DTPA, EDTA, neutral ammonium citrate (NAC), buffer solution pH 6.0, 10 % HCl, 10 % sulfuric acid, 1 % acetic acid, water, and hot water to quantify the contents of Zn available for maize and compare them with indices of agronomic efficiency of fertilizers and industrial by-products when applied to dystrophic Clayey Red Latosol and Dystrophic Alic Red Yellow Latosol with medium texture. The rate of Zn applied to the soil was 5 mg kg-1, using the sources zinc sulfate, commercial granular zinc, ash and galvanic sludge, ash and two brass slags. Most Zn was extracted from the sources by DTPA, 10 % HCl, NAC, 1% acetic acid, and 10 % sulfuric acid. Recovery by the extractors 2 % CA, EDTA, water, and hot water was low. The agronomic efficiency index was found to be high when using galvanic sludge (238 %) and commercial granular zinc (142 %) and lower with brass slag I and II (67 and 27 %, respectively). The sources galvanizing ash and brass ash showed solubility lower than 60 % in 2 % CA, despite agronomic efficiency indices of 78 and 125 %, respectively. The low agronomic efficiency index of industrial by-products such as brass slag I and galvanizing ash can be compensated by higher doses, provided there is no restriction, as well as for all other sources, in terms of contaminant levels of arsenic, cadmium, chromium, lead, and mercury as required by law (Normative Instruction No 27/2006). The implementation of 2nd extractor 2 % CA and the requirement of minimum solubility for industrial by-products could restrict the use of alternative sources as potential Zn sources for plants.
Resumo:
Selostus: Kasvien raskasmetallien otto ilmasta ja saastuneesta maasta