900 resultados para Artificial intelligence -- Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la modélisation des fonctions comportant plusieurs facteurs de variation. Nous sommes particulièrement intéressés par ce genre de données car nous espérons qu'un agent intelligent sera en mesure d'apprendre à les modéliser automatiquement; l'hypothèse est que les architectures profondes sont mieux adaptées pour les modéliser. Les travaux de Hinton (2006) furent une véritable percée, car l'idée d'utiliser un algorithme d'apprentissage non-supervisé, les machines de Boltzmann restreintes, pour l'initialisation des poids d'un réseau de neurones supervisé a été cruciale pour entraîner l'architecture profonde la plus populaire, soit les réseaux de neurones artificiels avec des poids totalement connectés. Cette idée a été reprise et reproduite avec succès dans plusieurs contextes et avec une variété de modèles. Dans le cadre de cette thèse, nous considérons les architectures profondes comme des biais inductifs. Ces biais sont représentés non seulement par les modèles eux-mêmes, mais aussi par les méthodes d'entraînement qui sont souvent utilisés en conjonction avec ceux-ci. Nous désirons définir les raisons pour lesquelles cette classe de fonctions généralise bien, les situations auxquelles ces fonctions pourront être appliquées, ainsi que les descriptions qualitatives de telles fonctions. L'objectif de cette thèse est d'obtenir une meilleure compréhension du succès des architectures profondes. Dans le premier article, nous testons la concordance entre nos intuitions---que les réseaux profonds sont nécessaires pour mieux apprendre avec des données comportant plusieurs facteurs de variation---et les résultats empiriques. Le second article est une étude approfondie de la question: pourquoi l'apprentissage non-supervisé aide à mieux généraliser dans un réseau profond? Nous explorons et évaluons plusieurs hypothèses tentant d'élucider le fonctionnement de ces modèles. Finalement, le troisième article cherche à définir de façon qualitative les fonctions modélisées par un réseau profond. Ces visualisations facilitent l'interprétation des représentations et invariances modélisées par une architecture profonde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’apprentissage machine est un vaste domaine où l’on cherche à apprendre les paramètres de modèles à partir de données concrètes. Ce sera pour effectuer des tâches demandant des aptitudes attribuées à l’intelligence humaine, comme la capacité à traiter des don- nées de haute dimensionnalité présentant beaucoup de variations. Les réseaux de neu- rones artificiels sont un exemple de tels modèles. Dans certains réseaux de neurones dits profonds, des concepts "abstraits" sont appris automatiquement. Les travaux présentés ici prennent leur inspiration de réseaux de neurones profonds, de réseaux récurrents et de neuroscience du système visuel. Nos tâches de test sont la classification et le débruitement d’images quasi binaires. On permettra une rétroac- tion où des représentations de haut niveau (plus "abstraites") influencent des représentations à bas niveau. Cette influence s’effectuera au cours de ce qu’on nomme relaxation, des itérations où les différents niveaux (ou couches) du modèle s’interinfluencent. Nous présentons deux familles d’architectures, l’une, l’architecture complètement connectée, pouvant en principe traiter des données générales et une autre, l’architecture convolutionnelle, plus spécifiquement adaptée aux images. Dans tous les cas, les données utilisées sont des images, principalement des images de chiffres manuscrits. Dans un type d’expérience, nous cherchons à reconstruire des données qui ont été corrompues. On a pu y observer le phénomène d’influence décrit précédemment en comparant le résultat avec et sans la relaxation. On note aussi certains gains numériques et visuels en terme de performance de reconstruction en ajoutant l’influence des couches supérieures. Dans un autre type de tâche, la classification, peu de gains ont été observés. On a tout de même pu constater que dans certains cas la relaxation aiderait à apprendre des représentations utiles pour classifier des images corrompues. L’architecture convolutionnelle développée, plus incertaine au départ, permet malgré tout d’obtenir des reconstructions numériquement et visuellement semblables à celles obtenues avec l’autre architecture, même si sa connectivité est contrainte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les documents publiés par des entreprises, tels les communiqués de presse, contiennent une foule d’informations sur diverses activités des entreprises. C’est une source précieuse pour des analyses en intelligence d’affaire. Cependant, il est nécessaire de développer des outils pour permettre d’exploiter cette source automatiquement, étant donné son grand volume. Ce mémoire décrit un travail qui s’inscrit dans un volet d’intelligence d’affaire, à savoir la détection de relations d’affaire entre les entreprises décrites dans des communiqués de presse. Dans ce mémoire, nous proposons une approche basée sur la classification. Les méthodes de classifications existantes ne nous permettent pas d’obtenir une performance satisfaisante. Ceci est notamment dû à deux problèmes : la représentation du texte par tous les mots, qui n’aide pas nécessairement à spécifier une relation d’affaire, et le déséquilibre entre les classes. Pour traiter le premier problème, nous proposons une approche de représentation basée sur des mots pivots c’est-à-dire les noms d’entreprises concernées, afin de mieux cerner des mots susceptibles de les décrire. Pour le deuxième problème, nous proposons une classification à deux étapes. Cette méthode s’avère plus appropriée que les méthodes traditionnelles de ré-échantillonnage. Nous avons testé nos approches sur une collection de communiqués de presse dans le domaine automobile. Nos expérimentations montrent que les approches proposées peuvent améliorer la performance de classification. Notamment, la représentation du document basée sur les mots pivots nous permet de mieux centrer sur les mots utiles pour la détection de relations d’affaire. La classification en deux étapes apporte une solution efficace au problème de déséquilibre entre les classes. Ce travail montre que la détection automatique des relations d’affaire est une tâche faisable. Le résultat de cette détection pourrait être utilisé dans une analyse d’intelligence d’affaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur sur un ensemble de caractéristiques. Pour les tâches de MIR se basant sur l'audio musical, il est possible d'extraire de l'audio les caractéristiques pertinentes à l'aide de méthodes traitement de signal. Toutefois, certains aspects musicaux sont difficiles à extraire à l'aide de simples heuristiques. Afin d'obtenir des caractéristiques plus riches, il est possible d'utiliser l'AM pour apprendre une représentation musicale à partir de l'audio. Ces caractéristiques apprises permettent souvent d'améliorer la performance sur une tâche de MIR donnée. Afin d'apprendre des représentations musicales intéressantes, il est important de considérer les aspects particuliers à l'audio musical dans la conception des modèles d'apprentissage. Vu la structure temporelle et spectrale de l'audio musical, les représentations profondes et multiéchelles sont particulièrement bien conçues pour représenter la musique. Cette thèse porte sur l'apprentissage de représentations de l'audio musical. Des modèles profonds et multiéchelles améliorant l'état de l'art pour des tâches telles que la reconnaissance d'instrument, la reconnaissance de genre et l'étiquetage automatique y sont présentés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les systèmes statistiques de traduction automatique ont pour tâche la traduction d’une langue source vers une langue cible. Dans la plupart des systèmes de traduction de référence, l'unité de base considérée dans l'analyse textuelle est la forme telle qu’observée dans un texte. Une telle conception permet d’obtenir une bonne performance quand il s'agit de traduire entre deux langues morphologiquement pauvres. Toutefois, ceci n'est plus vrai lorsqu’il s’agit de traduire vers une langue morphologiquement riche (ou complexe). Le but de notre travail est de développer un système statistique de traduction automatique comme solution pour relever les défis soulevés par la complexité morphologique. Dans ce mémoire, nous examinons, dans un premier temps, un certain nombre de méthodes considérées comme des extensions aux systèmes de traduction traditionnels et nous évaluons leurs performances. Cette évaluation est faite par rapport aux systèmes à l’état de l’art (système de référence) et ceci dans des tâches de traduction anglais-inuktitut et anglais-finnois. Nous développons ensuite un nouvel algorithme de segmentation qui prend en compte les informations provenant de la paire de langues objet de la traduction. Cet algorithme de segmentation est ensuite intégré dans le modèle de traduction à base d’unités lexicales « Phrase-Based Models » pour former notre système de traduction à base de séquences de segments. Enfin, nous combinons le système obtenu avec des algorithmes de post-traitement pour obtenir un système de traduction complet. Les résultats des expériences réalisées dans ce mémoire montrent que le système de traduction à base de séquences de segments proposé permet d’obtenir des améliorations significatives au niveau de la qualité de la traduction en terme de le métrique d’évaluation BLEU (Papineni et al., 2002) et qui sert à évaluer. Plus particulièrement, notre approche de segmentation réussie à améliorer légèrement la qualité de la traduction par rapport au système de référence et une amélioration significative de la qualité de la traduction est observée par rapport aux techniques de prétraitement de base (baseline).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La motivation incite les apprenants à s’engager dans une activité et à persévérer dans son accomplissement afin d’atteindre un but. Dans les Systèmes Tutoriels Intelligents (STI), les études sur la motivation des apprenants possèdent trois manques importants : un manque de moyens objectifs et fiables pour évaluer cet état, un manque d’évaluation de rôles joués par les facteurs motivationnels conçus dans l’environnement d’apprentissage et un manque de stratégies d’interventions motivationnelles pour soutenir la motivation des apprenants. Dans cette thèse, nous nous intéressons à mieux comprendre l’état de la motivation des apprenant ainsi que les facteurs et stratégies motivationnels dans un environnement d’apprentissage captivant : les jeux sérieux. Dans une première étude, nous évaluons la motivation des apprenants par l’entremise d’un modèle théorique de la motivation (ARCS de Keller) et de données électro-physiologiques (la conductivité de la peau, le rythme cardiaque et l’activité cérébrale). Nous déterminons et évaluons aussi quelques situations ou stratégies favorisant la motivation dans l’environnement des jeux sérieux étudié. Dans une deuxième étude, nous développons un prototype de jeux sérieux intégrant – dans une première version – quelques éléments motivationnels issus de jeux vidéo et – dans une deuxième version – des stratégies motivationnelles d’un modèle théorique de la motivation. Nous espérons, avec une évaluation motivationnelle de notre prototype, soutenir les apprenants à atteindre des hauts niveaux de motivation, de persévérance et de performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La liste des domaines touchés par l’apprentissage machine s’allonge rapidement. Au fur et à mesure que la quantité de données disponibles augmente, le développement d’algorithmes d’apprentissage de plus en plus puissants est crucial. Ce mémoire est constitué de trois parties: d’abord un survol des concepts de bases de l’apprentissage automatique et les détails nécessaires pour l’entraînement de réseaux de neurones, modèles qui se livrent bien à des architectures profondes. Ensuite, le premier article présente une application de l’apprentissage machine aux jeux vidéos, puis une méthode de mesure performance pour ceux-ci en tant que politique de décision. Finalement, le deuxième article présente des résultats théoriques concernant l’entraînement d’architectures profondes nonsupervisées. Les jeux vidéos sont un domaine particulièrement fertile pour l’apprentissage automatique: il estf facile d’accumuler d’importantes quantités de données, et les applications ne manquent pas. La formation d’équipes selon un critère donné est une tˆache commune pour les jeux en lignes. Le premier article compare différents algorithmes d’apprentissage à des réseaux de neurones profonds appliqués à la prédiction de la balance d’un match. Ensuite nous présentons une méthode par simulation pour évaluer les modèles ainsi obtenus utilisés dans le cadre d’une politique de décision en ligne. Dans un deuxième temps nous présentons une nouvelleméthode pour entraîner des modèles génératifs. Des résultats théoriques nous indiquent qu’il est possible d’entraîner par rétropropagation des modèles non-supervisés pouvant générer des échantillons qui suivent la distribution des données. Ceci est un résultat pertinent dans le cadre de la récente littérature scientifique investiguant les propriétés des autoencodeurs comme modèles génératifs. Ces résultats sont supportés avec des expériences qualitatives préliminaires ainsi que quelques résultats quantitatifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse présente le résultat de plusieurs années de recherche dans le domaine de la génération automatique de résumés. Trois contributions majeures, présentées sous la forme d'articles publiés ou soumis pour publication, en forment le coeur. Elles retracent un cheminement qui part des méthodes par extraction en résumé jusqu'aux méthodes par abstraction. L'expérience HexTac, sujet du premier article, a d'abord été menée pour évaluer le niveau de performance des êtres humains dans la rédaction de résumés par extraction de phrases. Les résultats montrent un écart important entre la performance humaine sous la contrainte d'extraire des phrases du texte source par rapport à la rédaction de résumés sans contrainte. Cette limite à la rédaction de résumés par extraction de phrases, observée empiriquement, démontre l'intérêt de développer d'autres approches automatiques pour le résumé. Nous avons ensuite développé un premier système selon l'approche Fully Abstractive Summarization, qui se situe dans la catégorie des approches semi-extractives, comme la compression de phrases et la fusion de phrases. Le développement et l'évaluation du système, décrits dans le second article, ont permis de constater le grand défi de générer un résumé facile à lire sans faire de l'extraction de phrases. Dans cette approche, le niveau de compréhension du contenu du texte source demeure insuffisant pour guider le processus de sélection du contenu pour le résumé, comme dans les approches par extraction de phrases. Enfin, l'approche par abstraction basée sur des connaissances nommée K-BABS est proposée dans un troisième article. Un repérage des éléments d'information pertinents est effectué, menant directement à la génération de phrases pour le résumé. Cette approche a été implémentée dans le système ABSUM, qui produit des résumés très courts mais riches en contenu. Ils ont été évalués selon les standards d'aujourd'hui et cette évaluation montre que des résumés hybrides formés à la fois de la sortie d'ABSUM et de phrases extraites ont un contenu informatif significativement plus élevé qu'un système provenant de l'état de l'art en extraction de phrases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La traduction statistique requiert des corpus parallèles en grande quantité. L’obtention de tels corpus passe par l’alignement automatique au niveau des phrases. L’alignement des corpus parallèles a reçu beaucoup d’attention dans les années quatre vingt et cette étape est considérée comme résolue par la communauté. Nous montrons dans notre mémoire que ce n’est pas le cas et proposons un nouvel aligneur que nous comparons à des algorithmes à l’état de l’art. Notre aligneur est simple, rapide et permet d’aligner une très grande quantité de données. Il produit des résultats souvent meilleurs que ceux produits par les aligneurs les plus élaborés. Nous analysons la robustesse de notre aligneur en fonction du genre des textes à aligner et du bruit qu’ils contiennent. Pour cela, nos expériences se décomposent en deux grandes parties. Dans la première partie, nous travaillons sur le corpus BAF où nous mesurons la qualité d’alignement produit en fonction du bruit qui atteint les 60%. Dans la deuxième partie, nous travaillons sur le corpus EuroParl où nous revisitons la procédure d’alignement avec laquelle le corpus Europarl a été préparé et montrons que de meilleures performances au niveau des systèmes de traduction statistique peuvent être obtenues en utilisant notre aligneur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site web associé au mémoire: http://daou.st/JSreal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les humains communiquent via différents types de canaux: les mots, la voix, les gestes du corps, des émotions, etc. Pour cette raison, un ordinateur doit percevoir ces divers canaux de communication pour pouvoir interagir intelligemment avec les humains, par exemple en faisant usage de microphones et de webcams. Dans cette thèse, nous nous intéressons à déterminer les émotions humaines à partir d’images ou de vidéo de visages afin d’ensuite utiliser ces informations dans différents domaines d’applications. Ce mémoire débute par une brève introduction à l'apprentissage machine en s’attardant aux modèles et algorithmes que nous avons utilisés tels que les perceptrons multicouches, réseaux de neurones à convolution et autoencodeurs. Elle présente ensuite les résultats de l'application de ces modèles sur plusieurs ensembles de données d'expressions et émotions faciales. Nous nous concentrons sur l'étude des différents types d’autoencodeurs (autoencodeur débruitant, autoencodeur contractant, etc) afin de révéler certaines de leurs limitations, comme la possibilité d'obtenir de la coadaptation entre les filtres ou encore d’obtenir une courbe spectrale trop lisse, et étudions de nouvelles idées pour répondre à ces problèmes. Nous proposons également une nouvelle approche pour surmonter une limite des autoencodeurs traditionnellement entrainés de façon purement non-supervisée, c'est-à-dire sans utiliser aucune connaissance de la tâche que nous voulons finalement résoudre (comme la prévision des étiquettes de classe) en développant un nouveau critère d'apprentissage semi-supervisé qui exploite un faible nombre de données étiquetées en combinaison avec une grande quantité de données non-étiquetées afin d'apprendre une représentation adaptée à la tâche de classification, et d'obtenir une meilleure performance de classification. Finalement, nous décrivons le fonctionnement général de notre système de détection d'émotions et proposons de nouvelles idées pouvant mener à de futurs travaux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans la sémantique des cadres de Fillmore, les mots prennent leur sens par rapport au contexte événementiel ou situationnel dans lequel ils s’inscrivent. FrameNet, une ressource lexicale pour l’anglais, définit environ 1000 cadres conceptuels, couvrant l’essentiel des contextes possibles. Dans un cadre conceptuel, un prédicat appelle des arguments pour remplir les différents rôles sémantiques associés au cadre (par exemple : Victime, Manière, Receveur, Locuteur). Nous cherchons à annoter automatiquement ces rôles sémantiques, étant donné le cadre sémantique et le prédicat. Pour cela, nous entrainons un algorithme d’apprentissage machine sur des arguments dont le rôle est connu, pour généraliser aux arguments dont le rôle est inconnu. On utilisera notamment des propriétés lexicales de proximité sémantique des mots les plus représentatifs des arguments, en particulier en utilisant des représentations vectorielles des mots du lexique.