919 resultados para Arsenic in the body
Resumo:
The harbor seal (Phoca vitulina) is a large-bodied and abundant predator in the Salish Sea ecosystem, and its population has recovered since the 1970s after passage of the Marine Mammal Protection Act and the cessation of bounties. Little is known about how this large predator population may affect the recovery of fish stocks in the Salish Sea, where candidate marine protected areas are being proposed. We used a bioenergetics model to calculate baseline consumption rates in the San Juan Islands, Washington. Salmonids (Oncorhynchus spp.) and herring (Clupeidae) were the 2 most energetically important prey groups for biomass consumed by harbor seals. Estimated consumption of salmonids was 783 (±380 standard deviation [SD]) metric tons (t) in the breeding season and 675 (±388 SD t in the nonbreeding season. Estimated consumption of herring was 646 (±303 SD) t in the breeding season and 2151 (±706 SD) t in the nonbreeding season. Rockfish, a depressed fish stock currently in need of population recovery, composed one of the minor prey groups consumed by harbor seals (84 [±26 SD] t in the nonbreeding season). The variables of seal body mass and proportion of prey in seal diet explained >80% of the total variation in model outputs. Prey groups, such as rockfish, that are targeted for recovery may still be affected by even low levels of predation. This study highlights the importance of salmonids and herring for the seal population and provides a framework for refining consumption estimates and their confidence intervals with future data.
Resumo:
Demographic parameters were derived from sectioned otoliths of John’s Snapper (Lutjanus johnii) from 4 regions across 9° of latitude and 23° of longitude in northern Australia. Latitudinal variation in size and growth rates of this species greatly exceeded longitudinal variation. Populations of John’s Snapper farthest from the equator had the largest body sizes, in line with James’s rule, and the fastest growth rates, contrary to the temperature-size rule for ectotherms. A maximum age of 28.6 years, nearly 3 times previous estimates, was recorded and the largest individual was 990 mm in fork length. Females grew to a larger mean asymptotic fork length (L∞) than did males, a finding consistent with functional gonochorism. Otolith weight at age and gonad weight at length followed the same latitudinal trends seen in length at age. Length at maturity was ~72–87% of L∞ and varied by ~23% across the full latitudinal gradient, but age at first maturity was consistently in the range of 6–10 years, indicating that basic growth trajectories were similar across vastly different environments. We discuss both the need for complementary reproductive data in age-based studies and the insights gained from experiments where the concept of oxygen- and capacity-limited thermal tolerance is applied to explain the mechanistic causes of James’s rule in tropical fish species.
Resumo:
In this report we have attempted to evaluate the ecological and economic consequences of hypoxia in the northern Gulf of Mexico. Although our initial approach was to rely on published accounts, we quickly realized that the body of published literature deahng with hypoxia was limited, and we would have to conduct our own exploratory analysis of existing Gulf data, or rely on published accounts from other systems to infer possible or potential effects of hypoxia. For the economic analysis, we developed a conceptual model of how hypoxia-related impacts could affect fisheries. Our model included both supply and demand components. The supply model had two components: (1) a physical production function for fish or shrimp, and (2) the cost of fishing. If hypoxia causes the cost of a unit of fishing effort to change, then this will result in a shift in supply. The demand model considered how hypoxia might affect the quality of landed fish or shrimp. In particular, the market value per pound is lower for small shrimp than for large shrimp. Given the limitations of the ecological assessment, the shallow continental shelf area affected by hypoxia does show signs of hypoxia-related stress. While current ecological conditions are a response to a variety of stressors, the effects of hypoxia are most obvious in the benthos that experience mortality, elimination of larger long-lived species, and a shifting of productivity to nonhypoxic periods (energy pulsing). What is not known is whether hypoxia leads to higher productivity during productive periods, or simply to a reduction of productivity during oxygen-stressed periods. The economic assessment based on fisheries data, however, failed to detect effects attributable to hypoxia. Overall, fisheries landings statistics for at least the last few decades have been relatively constant. The failure to identify clear hypoxic effects in the fisheries statistics does not necessarily mean that they are absent. There are several possibilities: (1) hypoxic effects are small relative to the overall variability in the data sets evaluated; (2) the data and the power of the analyses are not adequate; and (3) currently there are no hypoxic effects on fisheries. Lack of identified hypoxic effects in available fisheries data does not imply that effects would not occur should conditions worsen. Experience with other hypoxic zones around the globe shows that both ecological and fisheries effects become progressively more severe as hypoxia increases. Several large systems around the globe have suffered serious ecological and economic consequences from seasonal summertime hypoxia; most notable are the Kattegat and Black Sea. The consequences range from localized loss of catch and recruitment failure to complete system-wide loss of fishery species. If experiences in other systems are applicable to the Gulf of Mexico, then in the face of worsening hypoxic conditions, at some point fisheries and other species will decline, perhaps precipitously.
Resumo:
Hurricanes can cause extensive damage to the coastline and coastal communities due to wind-generated waves and storm surge. While extensive modeling efforts have been conducted regarding storm surge, there is far less information about the effects of waves on these communities and ecosystems as storms make landfall. This report describes a preliminary use of NCCOS’ WEMo (Wave Exposure Model; Fonseca and Malhotra 2010) to compute the wind wave exposure within an area of approximately 25 miles radius from Beaufort, North Carolina for estuarine waters encompassing Bogue Sound, Back Sound and Core Sound during three hurricane landfall scenarios. The wind wave heights and energy of a site was a computation based on wind speed, direction, fetch and local bathymetry. We used our local area (Beaufort, North Carolina) as a test bed for this product because it is frequently impacted by hurricanes and we had confidence in the bathymetry data. Our test bed conditions were based on two recent Hurricanes that strongly affected this area. First, we used hurricane Isabel which made landfall near Beaufort in September 2003. Two hurricane simulations were run first by passing hurricane Isabel along its actual path (east of Beaufort) and second by passing the same storm to the west of Beaufort to show the potential effect of the reversed wind field. We then simulated impacts by a hurricane (Ophelia) with a different landfall track, which occurred in September of 2005. The simulations produced a geographic description of wave heights revealing the changing wind and wave exposure of the region as a consequence of landfall location and storm intensity. This highly conservative simulation (water levels were that of low tide) revealed that many inhabited and developed shorelines would receive wind waves for prolonged periods of time at heights far above that found during even the top few percent of non-hurricane events. The simulations also provided a sense for how rapidly conditions could transition from moderate to highly threatening; wave heights were shown to far exceed normal conditions often long before the main body of the storm arrived and importantly, at many locations that could impede and endanger late-fleeing vessels seeking safe harbor. When joined with other factors, such as storm surge and event duration, we anticipate that the WEMo forecasting tool will have significant use by local emergency agencies and the public to anticipate the relative exposure of their property arising as a function of storm location and may also be used by resource managers to examine the effects of storms in a quantitative fashion on local living marine resources.
Resumo:
An ecosystem approach to fisheries management requires an understanding of the impact of predatory fishes on the underlying prey resources. Defining trophic connections and measuring rates of food consumption by apex predators lays the groundwork for gaining insight into the role of predators and commercial fisheries in influencing food web structure and ecosystem dynamics.We analyzed the stomach contents of 545 common dolphinfish (Coryphaena hippurus) sampled from 74 sets of tuna purse-seine vessels fishing in the eastern Pacific Ocean (EPO) over a 22-month period. Stomach fullness of these dolphinfish and digestion state of the prey indicated that diel feeding periodicity varied by area and may be related to the digestibility and energy content of the prey. Common dolphinfish in the EPO appear to feed at night, as well as during the daytime. We analyzed prey importance by weight, numbers, and frequency of occurrence for five regions of the EPO. Prey importance varied by area. Flyingfishes, epipelagic cephalopods, tetraodontiform fishes, several mesopelagic fishes, Auxis spp., and gempylid fishes predominated in the diet. Ratios of prey length to predator length ranged from 0.014 to 0.720. Consumption-rate estimates averaged 5.6% of body weight per day. Stratified by sex, area, and length class, daily rations ranged up to 9.6% for large males and up to 19.8% for small dolphinfish in the east area (0–15°N, 111°W–coastline). Because common dolphinfish exert substantial predation pressure on several important prey groups, we concluded that their feeding ecology provides important clues to the pelagic food web and ecosystem structure in the EPO.
Resumo:
The vertical and horizontal movements of southern bluefin tuna (SBT), Thunnus maccoyii, in the Great Australian Bight were investigated by ultrasonic telemetry. Between 1992 and 1994, sixteen tuna were tracked for up to 49 h with depth or combined temperature-depth transmitting tags. The average swimming speeds (measured over the ground) over entire tracks ranged from 0.5 to 1.4 m/s or 0.5 to 1.4 body lengths/s. The highest sustained swimming speed recorded was 2.5 m/s for 18 hours. Horizontal movements were often associated with topographical features such as lumps, reefs, islands and the shelf break. They spent long periods of time at the surface during the day (nearly 30%), which would facilitate abundance estimation by aerial survey. At night, they tended to remain just below the surface, but many remained in the upper 10 m throughout the night. SBT were often observed at the thermocline interface or at the surface while travelling. A characteristic feature of many tracks was sudden dives before dawn and after sunset during twilight, followed by a gradual return to their original depth. It is suggested that this is a behavior evolved to locate the scattering layer and its associated prey when SBT are in waters of sufficient depth. SBT maintained a difference between stomach and ambient temperature of up to 9°C.
Resumo:
Reproductive organs from 393 male and 382 female porbeagles (Lamna nasus), caught in the western North Atlantic Ocean, were examined to determine size at maturity and reproductive cycle. Males ranged in size from 86 to 246 cm fork length (FL) and females ranged from 94 to 288 cm FL. Maturity in males was best described by an inflection in the relationship of clasper length to fork length when combined with clasper calcification. Males matured between 162 and 185 cm FL and 50% were mature at 174 cm FL. In females, all reproductive organ measurements related to body length showed a strong inflection around the size of maturity. Females matured between 210 and 230 cm FL and 50% were mature at 218 cm FL. After a protracted fall mating period (September–November), females give birth to an average of 4.0 young in spring (April−June). As in other lamnids, young are nourished through oophagy. Evidence from this study indicated a one-year reproductive cycle and gestation period lasting 8–9 months.
Resumo:
The growth performance of a predatory snakehead, Channa striatus was tested by supplying tadpoles of Rana tigrina and fingerlings of Puntius gonionotus and Labeo rohita as prey for a period of 21 days in aquaria. Prey consumption by C. striatus was significantly different (P<0.05) for different prey used (T1 - R. tigrina, T2 - P. gonionotus, T3 - L. rohita). Tadpoles of R. tigrina were preferred by the predator (C. striatus) over P. gonionotus and L. rohita although tadpole is nutritionally inferior to each of P. gonionotus and L. rohita. Each predator rayed on 50-330 mg per day per g of their body weight. Fish preyed on tadpoles also showed the highest growth. Significant difference in weight gain was found between T1 and T2 and also between T1 and T3 but no difference was found between T2 and T3. Food conversion ratio (FCR) was found to be lowest in treatment T3 followed by the treatments T2 and T1 respectively.
Resumo:
Salinity, temperature and pressure are parameters which govern the oceanographic state of a marine water body and together they make up density of seawater. In this contribution we will focus our interest on one of these parameters, the salinity: accuracy in relation to different purposes as well as observation technique and instrumentation. We will also discuss the definition of salinity. For example most of the Indian Ocean waters are within the salinity range from 34.60-34.80, which emphasize the importance of careful observations and clear definitions of salinity, in such a way that it is possible to define water masses and predict their movements. In coastal waters the salinity usually features much larger variation in time and space and thus less accuracy is sometimes needed. Salinity has been measured and defined in several ways over the past century. While early measurements were based on the amount of salt in a sea water sample, today the salinity of seawater is most often determined from its conductivity. As conductivity is a function of salinity and temperature, determination involves also measurement of the density of seawater is now more precisely estimated and thus the temperature. As a result of this method the Practical Salinity Scale (PSS) was developed. The best determination of salinity from conductivity and the temperature measurements gives salinity with resolution of 0.001 psu, while the accuracy of titration method was about ± 0.02‰. Because of that, even calculation of movements in the ocean is also improved.
Resumo:
Age structure and growth profile based on the scale studies of 468 specimens ranging from 17-62 cm total length of Labeo calbasu (Hamilton) from Harike wetland (30°13'N, 75°12'E), Punjab, India have been described, the present study showed better growth in terms of two important growth parameters namely index of species average size and population weight-growth intensity. Two distinct phases in its life history have been described that indicates the optimum exploitation of this species from this water body. Harvestable size is found to be fish of 34 cm total length. The detailed structural elaboration of scale (normal, regenerated, lateral line) has also been done using scanning electron microscopy (SEM).
Resumo:
A study was conducted to evaluate the effect of phosphorus supplementation in the
formulated fish diet on carcass quality of Nile tilapia in net-cages suspended in fertilized
earthen ponds. In the experiment 3% di-calcium phosphate (DCP), 3% triple supper
phosphate (TSP) and 7% 16:20 inorganic fertilizer were added as phosphorous sources to
three diets containing fish meal as main protein ingredient. Feeding tilapia in net-cages
with these diets significantly (p
Resumo:
Population parameters of Jhonius argentatus and Johnieops vogleri in coastal waters of Bay of Bengal, Bangladesh were estimated by using FiSAT programme. The von Bertalanffy growth parameters, extreme length (cm) and growth constant K (year ·1) were found to be 46.50 and 0.59 for J. argentatus, and 33.50 and 0.85 for J.vogleri The Loc(cm) and Z/K estimates provided by Wetherall plot were 46.694 and 1.791 for J. argentatus, and 31.25 and 2.623 for J. vogleri. The annual rate of natural (M) and fishing mortality (F) were estimated as 1.12 and 0.78 for J. argentatus, and 1.56 and 1.28 for J. vogleri. Rate of exploitation (E) was estimated as 0.41 for J. argentatus and 0.45 for J. vogleri. About 80.04% of J. argentatus were found to be recruited during peak pulses (April-May) and 19.96% during lean pulses (October-November) and 85.75% J. vogleri during peak pulses (May-July) and 14.25% during lean pulses (September-October). The growth performance index(') was 3.11 for J. argentatus and 1.93 for J. vogleri. The total length and body weight relationship was found to be W = 0.0403 TL25723 for J. argentatus and W = 0.0907 TV3482 for J. vogleri.
Resumo:
The experiment was conducted for 35 days in nine cement tubs (1 x 1 x 1 m) having 15 cm sandy-loam soil base with three treatments in triplicate, viz., cow dung alone at the rate of 1 kg/tub (T sub(1)), cow dung at 1 kg/tub and feed at 10% body wt/d in two meals (T sub(2)), and cow dung at 1 kg and paddy straw at 200 g/tub (T sub(3)). Both manure and substrate were added on dry weight basis. All the tubs were stocked with 10 fry each mrigal (100,000/ha) of average weight of 0.09 g, seven days after the addition of manure and substrate. The total plate count of bacteria in water did not vary much between the treatments and the mean values were 5.13, 5.49 and 5.85 (CFU x 10 super(4)/ml) in T sub(1) T sub(2) and T sub(3) respectively. The number of phytoplankters and zooplankters in water differed significantly between the treatments. The average number of attached algae (no./cm³) and fish food organisms (no./cm³) recorded on the substrate were 145.28 and 70.67, respectively. The mean final weight of mrigal differed significantly (P < 0.05) between the treatments with T sub(3) registering the highest value of 6.93 g followed by T sub(2) (5.01 g) and T sub(1) (3.37 g). The specific growth rate and growth increment of fish also followed the same trend as that of weight recorded in the different treatments. Survival was higher in T sub(2) (83.33%), followed by T sub(3) (80.00%) and T sub(1) (76.67%). The study demonstrates that by the introduction of biodegradable substrates like paddy straw into the culture systems, significantly higher growth and survival can be obtained in the nursery rearing of mrigal.
Resumo:
A study of the distribution of some chemical constituents in the musculature of Channa punctatus Bloch showed it to be fairly heterogeneous. The increase in the levels of protein, fat, ash, total carbohydrates, glycogen, RNA, DNA and cholesterol towards the posterior region of the fillet was the result of increase in the number of cells per unit weight of the sample and in the concentration of myocommata. The distribution of water in the musculature was inversely related to that of the fat. The concentration of protein appeared to be associated with the RNA level. The posterior region of the fillet exhibited more calorific value than the anterior region.
Resumo:
A detailed study of the fortification of normal creosote and low temperature creosote with As sub(2) O sub(3) at 40°C, 50°C, 60°C, 70°C, 80°C and 90°C was carried out. When compared to normal creosote, low temperature creosote has been found to combine more easily with As sub(2) O sub(3) when temperature was . raised from 40 to 90°C. The incorporated arsenic values obtained shows that low temperature creosote with high phenolic content, retains considerably more As sub(2) O sub(3) and a maximum of 0.2180% w/w can be incorporated in low temperature creosote at 90°C.