527 resultados para Ancyrodella gigas
Resumo:
The main emphasis of this study was to analyse the short-term development of abundance, population structure and vertical distribution of the dominant calanoid copepods during a phytoplankton bloom in the coastal area of the eastern Weddell Sea in December 2003. Microcalanus pygmaeus was by far the most abundant calanoid species. Metridia gerlachei, Ctenocalanus citer, Calanoides acutus, Calanus propinquus and the ice-associated Stephos longipes were also present in considerable proportions. The observed changes in the population characteristics and parameters of these species are described in detail and discussed in the context of the spring phytoplankton bloom. A conspicuous event occurring during the final stage of the study was the development of a strong storm. While the results suggest that this storm did not have any considerable influence on the populations of all other investigated copepod species, it very likely caused pronounced changes in the S. longipes population present in the water column. Before the storm, S. longipes was found primarily in the upper 100 m of the water column, and its population was dominated by adults (mean proportion = 41%) and the copepodite stage I (mean proportion = 30%). After the storm, the abundance increased considerably, and the copepodite stage I contributed by far the largest proportion (53%) of the total population indicating that the early copepodite stages probably had been released from the sea ice into the under ice water layer due to ice break-up and ice melt processes caused by the storm.
Resumo:
Five sites were drilled on the Iberia Abyssal Plain, west of the Iberian Peninsula. Four holes (897C, 897D, 899B, and 900A) yielded Eocene sediments that consist of turbidites and contourites. The Eocene section above the continental crust at Site 900 is continuous (from nannofossil Zones NP10 to NP20) and considerably expanded because of the site's relatively shallow depth, which remained consistently above the carbonate compensation depth (CCD). Sites 897 and 898, situated in deeper water above the ocean/continent transition, on the other hand, have noncontinuous, relatively short Eocene sections (from Zones NP14 to NP20 at Site 897 and from Zones NP19 to NP20 at Site 899). Nannofossils are abundant, diverse, and moderately to poorly preserved; they provide the primary means of dating the Eocene sediments recovered during Leg 149.
Resumo:
"Extrait de la Revue hispanique, tome IX".
Resumo:
Title vignette.
Resumo:
Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish ( the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs ( A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian fishes. The extremely high cholesterol/disaturated PL and cholesterol/PL ratios of surfactant extracted from tarpon and pirarucu bladders and the poor surface activity of tarpon surfactant are characteristics of the surfactant system in other fishes. Despite the paraphyletic phylogeny of the Osteichthyes, their surfactant is uniform in composition and may represent the vertebrate protosurfactant.
Resumo:
This study investigated the chromosome ploidy level of Marsupenaeus (Penaeus) japonicus (Bate) non-viable (unhatched) embryos and nauplii after exposure to 6-dimethylaminopurine (6-DMAP), timed to stop either polar body (PB) I, or PBI and II extrusion. Embryos from eight separate families or spawnings were exposed to 150 or 200 mu M 6-DMAP from 1- to 3-min post-spawning detection (psd) for a 4- to 5-min duration (timed to stop PBI extrusion). Separate aliquots of embryos from five of the same spawnings were also exposed to 200 mu M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). For one spawning, a third aliquot of embryos was exposed to 400 p M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). At 18-h psd, non-viable embryo and nauplii samples were taken separately for fluorescent activated cell sorting (FACS). FACS revealed that there were diploids and triploids among all treated non-viable embryos and nauplii. All control non-viable embryos and nauplii were diploid. Percentages of triploid induction for the 4- to 5-min and 16-min durations were not significantly different (P > 0.05). Additionally, no difference was found in the triploidy level of nonviable embryos compared to nauplii in these treatments. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 4- to 5-min duration ranged from 29.57% to 99.23% (average 55.28 +/- 5.45%) and from 5.60% to 98.85% (average 46.70 +/- 7.20%), respectively. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 16-min duration ranged from 11.71% to 98.96% (average 52.49 +/- 11.00%) and from 47.5% to 99.24% (average 79.38 +/- 5.24%), respectively. To our knowledge, this is the first documentation of successful PBI or PBI and II inhibition in shrimp. This study conclusively shows that treatment of M. japonicus embryos with 6-DMAP at 1- to 3-min pscl for either a 4- to 5-min duration (timed to stop PBl extrusion) or 16-min duration (timed to stop both PBI and II extrusion) results in viable triploid nauplii. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this study tetraploid Marsupenaeus japonicus (Bate) embryos were produced by preventing the first division in mitosis. The effectiveness of temperature and chemical shocks for producing tetraploid M. japonicus were assessed when applied at different times postspawning and for different durations. Tetraploid M. japonicus embryos (spawned at 27 degrees C) were produced by heat shocks at 35 degrees C and 36 degrees C in three and eight spawning samples respectively, and a cold shock at 5 degrees C in a single spawning sample. All temperature shocks inducing tetraploidy were applied 18-23 min postspawning for a 5-10 min duration. The percentage of spawnings successfully inducing tetraploid embryos (i.e., frequency of induction) ranged from 33.33% to 66.67% for the 21, 22 and 23 min postspawning heat shock treatment regimes. The percentage of tetraploid embryos within an induction (i.e., induction rate), as determined by flow cytometry, ranged from 8.82% to 98.12% (ave. S.E.) (34.4 +/- 21.4%) for the 35 degrees C shock treatments, from 13.12% to 61.02% (35.0 +/- 5.0%) for the 36 degrees C shock treatments and was 15% for the 5 degrees C cold shock treatment. No tetraploids were produced for spawnings that received heat shocks above 36 degrees C or below 35 degrees C, or for cold shocks above 5 degrees C for any of the tested postspawning treatment and duration times. Chemical shock with 150 mu M 6-dimethylaminopurine did not result in tetraploid M. japonicus embryos at any of the tested postspawning treatment times and durations. Tetraploid M. japonicus embryos were nonviable, with no tetraploid larvae being detected by flow cytometry. Based on our results heat shocking of M. japonicus embryos at 36 degrees C, 23 min postspawning for a 5-10 min duration is the most effective means to produce tetraploids through inhibition of the first mitotic division (taking into consideration the importance of frequency and induction rate equally).
Resumo:
Growth, Condition Index (CI) and survival of the pearl oysters, Pinctada maxima and R margaritifera, were measured in three size groups of oysters over 14 months at two dissimilar environments in the Great Barrier Reef lagoon. These were the Australian Institute of Marine Science (AIMS) in a mainland bay and Orpheus Island Research Station (OIRS) in coral reef waters. Temperature, suspended particulate matter (SPM) and particulate organic matter (POM) were monitored during the study. Temperature at AIMS fluctuated more widely than at OIRS both daily and seasonally, with annual ranges 20-31 degrees C and 22-30 degrees C, respectively. Mean SPM concentration at AIMS (11.1 mg l(-1)) was much higher than at OIRS (1.4 mg l(-1)) and fluctuated widely (2-60 mg l(-1)). Mean POM level was also substantially higher at AIMS, being 2.1 mg l(-1) compared with 0.56 mg l(-1) at OIRS. Von Bertalatiffy growth curve analyses showed that P. maxima grew more rapidly and to larger sizes than P. margaritifera at both sites. For the shell height (SH) of R maxima, growth index phi'=4.31 and 4.24, asymptotic size SHinfinity = 229 and 205 mm, and time to reach 120 mm SH (T-(120))= 1.9 and 2.1 years at AIMS and OIRS, respectively. While for P margaritifera, phi'=4.00 and 4.15, SHinfinity = 136 and 157 mm, and T-(120) = 2.5 and 3.9 years at AIMS and OIRS, respectively. R maxima had significantly lower growth rates and lower survival of small oysters during winter compared with summer. There were, however, no significant differences between the two sites in growth rates of P. maxima and final Cl values. In contrast, P. margaritifiera showed significant differences between sites and not seasons, with lower growth rates, survival of small oysters, final Cl values and asymptotic sizes at AIMS. The winter low temperatures, but not high SPM at AIMS, adversely affected P. maxima. Conversely, the high SPM levels at AIMS, but not temperature, adversely affected P. margaritifera. This was in accordance with earlier laboratory-based energetics studies of the effects of temperature and SPM on these two species. P maxima has potential to be commercially cultured in ca. > 25 degrees C waters with a wide range of SPM levels, including oligotrophic coral reef waters with appropriate particle sizes. It is possible to culture R margaritifera in turbid conditions, but its poor performance in these conditions makes commercial culture unlikely. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.