989 resultados para Ancestral range estimation
Resumo:
Universal standard goniometer is an essential tool to measure articulations' range of motion (ROM). In this time of technological advances and increasing use of smartphones, new measurement's tools appear as specific smartphone applications. This article compares the iOS application "Knee Goniometer" with universal standard goniometer to assess knee ROM. To our knowledge, this is the first study that uses a goniometer application in a clinical context. The purpose of this study is to determine if this application could be used in clinical practice.
Resumo:
Aim Specialized mutualistic clades may revert and thus increase their autonomy and generalist characteristics. However, our understanding of the drivers that trigger reductions in mutualistic traits and of the consequences for the tolerance of these species to various environmental conditions remains limited. This study investigates the relationship between the environmental niche and the degree of myrmecophily (i.e. the ability to interact with ants) among members of the Lycaenidae. Location The western Swiss Alps. Methods We measured the tolerance of Lycaenidae species to low temperatures by comparing observations from a random stratified field sampling with climatic maps. We then compared the species-specific degree of myrmecophily with the species range limits at colder temperatures while controlling for phylogenetic dependence. We further evaluated whether the community-averaged degree of myrmecophily increases with temperature, as would be expected in the case of environmental filters acting on myrmecophilous species. Results Twenty-nine Lycaenidae species were found during sampling. Ancestral state reconstruction indicated that the 24 species of Polyommatinae displayed both strong myrmecophily and secondary loss of mutualism; these species were used in the subsequent statistical analyses. Species with a higher degree of ant interaction were, on average, more likely to inhabit warmer sites. Species inhabiting the coldest environments displayed little or no interaction with ants. Main conclusions Colder climates at high elevations filter out species with a high degree of myrmecophily and may have been the direct evolutionary force that promoted the loss of mutualism. A larger taxon sampling across the Holarctic may help to distinguish between the ecological and evolutionary effects of climate.
Resumo:
BACKGROUND: Creatinine clearance is the most common method used to assess glomerular filtration rate (GFR). In children, GFR can also be estimated without urine collection, using the formula GFR (mL/min x 1.73 m2) = K x height [cm]/Pcr [mumol/L]), where Pcr represents the plasma creatinine concentration. K is usually calculated using creatinine clearance (Ccr) as an index of GFR. The aim of the present study was to evaluate the reliability of the formula, using the standard UV/P inulin clearance to calculate K. METHODS: Clearance data obtained in 200 patients (1 month to 23 years) during the years 1988-1994 were used to calculate the factor K as a function of age. Forty-four additional patients were studied prospectively in conditions of either hydropenia or water diuresis in order to evaluate the possible variation of K as a function of urine flow rate. RESULTS: When GFR was estimated by the standard inulin clearance, the calculated values of K was 39 (infants less than 6 months), 44 (1-2 years) and 47 (2-12 years). The correlation between the values of GFR, as estimated by the formula, and the values measured by the standard clearance of inulin was highly significant; the scatter of individual values was however substantial. When K was calculated using Ccr, the formula overestimated Cin at all urine flow rates. When calculated from Ccr, K varied as a function of urine flow rate (K = 50 at urine flow rates of 3.5 and K = 64 at urine flow rates of 8.5 mL/min x 1.73 m2). When calculated from Cin, in the same conditions, K remained constant with a value of 50. CONCLUSIONS: The formula GFR = K x H/Pcr can be used to estimate GFR. The scatter of values precludes however the use of the formula to estimate GFR in pathophysiological studies. The formula should only be used when K is calculated from Cin, and the plasma creatinine concentration is measured in well defined conditions of hydration.
Resumo:
The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.
Resumo:
ABSTRACT: BACKGROUND: Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats. RESULTS: We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations. CONCLUSIONS: The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.
Resumo:
This paper proposes to estimate the covariance matrix of stock returnsby an optimally weighted average of two existing estimators: the samplecovariance matrix and single-index covariance matrix. This method isgenerally known as shrinkage, and it is standard in decision theory andin empirical Bayesian statistics. Our shrinkage estimator can be seenas a way to account for extra-market covariance without having to specifyan arbitrary multi-factor structure. For NYSE and AMEX stock returns from1972 to 1995, it can be used to select portfolios with significantly lowerout-of-sample variance than a set of existing estimators, includingmulti-factor models.
Resumo:
Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.
Resumo:
Some introduced ant populations have an extraordinary social organization, called unicoloniality, whereby individuals mix freely within large supercolonies. We investigated whether this mode of social organization also exists in native populations of the Argentine ant Linepithema humile. Behavioral analyses revealed the presence of 11 supercolonies (width 1 to 515 m) over a 3-km transect. As in the introduced range, there was always strong aggression between but never within supercolonies. The genetic data were in perfect agreement with the behavioral tests, all nests being assigned to identical supercolonies with the different methods. There was strong genetic differentiation between supercolonies but no genetic differentiation among nests within supercolonies. We never found more than a single mitochondrial haplotype per supercolony, further supporting the view that supercolonies are closed breeding units. Genetic and chemical distances between supercolonies were positively correlated, but there were no other significant associations between geographic, genetic, chemical, and behavioral distances. A comparison of supercolonies sampled in 1999 and 2005 revealed a very high turnover, with about one-third of the supercolonies being replaced yearly. This dynamic is likely to involve strong competition between supercolonies and thus act as a potent selective force maintaining unicoloniality over evolutionary time.