969 resultados para Amino-acid Hydroxylases


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sera from transgenic mice (TM) carrying human genes of alpha 1-acid glycoprotein (orosomucoid or ORM) have been analyzed by isoelectrofocusing and subsequent immunoblotting with antihuman ORM antibodies. With this technique it is possible to reveal selectively the human protein secreted in the TM sera. Orosomucoid bands present in TM sera have been compared with those of the most common human ORM phenotypes to correlate the products of specific genes to previously identified genetic variants. In this paper, we report the identification of the genes encoding for variants ORM1 F1 and ORM2 A, which are genes AGP-A and AGP-B/B' respectively. The nucleotide sequences of these genes are known; therefore a direct correlation between variants and specific amino acid sequences can be established.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate, and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early aging.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8'085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4'974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the "amino acid metabolism" category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pitfalls in organic acid analysis can originate from inadequate methodology, analytical interferences, in vivo interactions and from pre-analytical conditions which often are unknown to the specialized analytical laboratory. Among the latter, ingested food and additives, metabolites of food processing or medications have to be considered. Bacterial metabolites from the gastrointestinal or urogenital system or formed after sample collection can lead to pitfalls as well. An example of such a patient whose urinary metabolites mimic at first glance inherited propionic aciduria is described.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of amino acid and/or glucose administration before and during exercise on protein metabolism in visceral tissues and skeletal muscle was examined in mongrel dogs. The dogs were subjected to treadmill running (150 minutes at 10 km/h and 12% incline) and intravenously infused with a solution containing amino acids and glucose (AAG), amino acids (AA), glucose (G) or saline (S) in randomized order. The infusion was started 60 minutes before exercise and continued until the end of the exercise period. An arteriovenous-difference technique was used to estimate both tissue protein degradation and synthesis. When S was infused, the release of leucine (Leu) from the gut and phenylalanine (Phe) from the hindlimb significantly increased during exercise, thus indicating that exercise augmented proteolysis in these tissues. The balance of Leu across the gut during exercise demonstrated a net uptake with both AAG and AA, whereas a net release was observed for G and S. In addition, Leu uptake in the gut during the last 90 minutes of the exercise period tended to be greater with AAG versus AA (P = .06). Phe balance across the hindlimb during the late exercise period showed a significant release with S, AA, and G, whereas the balance with AAG did not show a significant release. These results suggest that exercise-induced proteolysis in the gut may be reduced by supplementation with AA, and this effect may be enhanced by concomitant G administration. However, in skeletal muscle, both AA and G may be required to prevent net protein degradation during exercise. G provided without AA did not achieve net protein synthesis in either tissue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high-affinity siderophore salicylate is an intermediate in the biosynthetic pathway of pyochelin, another siderophore and chelator of transition metal ions, in Pseudomonas aeruginosa. The 2.5-kb region upstream of the salicylate biosynthetic genes pchBA was sequenced and found to contain two additional, contiguous genes, pchD and pchC, having the same orientation. The deduced amino acid sequence of the 60-kDa PchD protein was similar to those of the EntE protein (2,3-dihydroxybenzoate-AMP ligase) of Escherichia coli and other adenylate-forming enzymes, suggesting that salicylate might be adenylated at the carboxyl group by PchD. The 28-kDa PchC protein showed similarities to thioesterases of prokaryotic and eukaryotic origin and might participate in the release of the product(s) formed from activated salicylate. One potential product, dihydroaeruginoate (Dha), was identified in culture supernatants of iron-limited P. aeruginosa cells. The antifungal antibiotic Dha is thought to arise from the reaction of salicylate with cysteine, followed by cyclization of cysteine. Inactivation of the chromosomal pchD gene by insertion of the transcription and translation stop element omega Sm/Sp abolished the production of Dha and pyochelin, implying that PchD-mediated activation of salicylate may be a common first step in the synthesis of both metabolites. Furthermore, the pchD::omega Sm/Sp mutation had a strong polar effect on the expression of the pchBA genes, i.e., on salicylate synthesis, indicating that the pchDCBA genes constitute a transcriptional unit. A full-length pchDCBA transcript of ca. 4.4 kb could be detected in iron-deprived, growing cells of P. aeruginosa. Transcription of pchD started at tandemly arranged promoters, which overlapped with two Fur boxes (binding sites for the ferric uptake regulator) and the promoter of the divergently transcribed pchR gene encoding an activator of pyochelin biosynthesis. This promoter arrangement allows tight iron-mediated repression of the pchDCBA operon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esters and amino acid derivatives of 5-aminolevulinic acid (ALA) are efficient prodrugs for the production of protoporphyrin IX (PpIX), which has been used in photodynamic cancer therapy (PDT). The synthesis of novel bioconjugates combining ALA with adenosine and thymidine is reported. The novel bioconjugates have been made using a robust methodology. The new class of prodrugs contains one, two, or three ALA per molecule. Preliminary cell tests in human cancer cell lines indicate that the thymidine conjugate of ALA is an efficient prodrug for PDT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of heterocyclic compounds with a 4-thiazolidone nucleus and amino acyl moiety were synthesized by protection reaction of thiosemicarbazide using the symmetrical anhydride (Boc)2O and cyclization with chloroacetic acid under mild conditions. Trifluoroacetic acid was used to obtain 4-thiazolidone and the alpha-amino acid condensation reactions were carried out using strategies for peptide synthesis. The characterization of this new class of compounds was performed using IR and ¹H-NMR spectroscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polysialic acid is a carbohydrate polymer which consist of N-acetylneuraminic acid units joined by alpha2,8-linkages. It is developmentally regulated and has an important role during normal neuronal development. In adults, it participates in complex neurological processes, such as memory, neural plasticity, tumor cell growth and metastasis. Polysialic acid also constitutes the capsule of some meningitis and sepsis-causing bacteria, such as Escherichia coli K1, group B meningococci, Mannheimia haemolytica A2 and Moraxella nonliquefaciens. Polysialic acid is poorly immunogenic; therefore high affinity antibodies against it are difficult to prepare, thus specific and fast detection methods are needed. Endosialidase is an enzyme derived from the E. coli K1 bacteriophage, which specifically recognizes and degrades polysialic acid. In this study, a novel detection method for polysialic acid was developed based on a fusion protein of inactive endosialidase and the green fluorescent protein. It utilizes the ability of the mutant, inactive endosialidase to bind but not cleave polysialic acid. Sequencing of the endosialidase gene revealed that amino acid substitutions near the active site of the enzyme differentiate the active and inactive forms of the enzyme. The fusion protein was applied for the detection of polysialic acid in bacteria and neuroblastoma. The results indicate that the fusion protein is a fast, sensitive and specific reagent for the detection of polysialic acid. The use of an inactive enzyme as a specific molecular tool for the detection of its substrate represents an approach which could potentially find wide applicability in the specific detection of diverse macromolecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 µM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 µM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 µM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure-function relationship of interferons (IFNs) has been studied by epitope mapping. Epitopes of bovine IFNs, however, are practically unknown, despite their importance in virus infections and in the maternal recognition of pregnancy. It has been shown that recombinant bovine (rBo)IFN-alphaC and rBoIFN-alpha1 differ only in 12 amino acids and that the F12 monoclonal antibody (mAb) binds to a linear sequence of residues 10 to 34. We show here that the antiviral activities of these two IFNs were neutralized by the F12 mAb to different extents using two tests. In residual activity tests the antiviral activity dropped by more than 99% with rBoIFN-alphaC and by 84% with rBoIFN-alpha1. In checkerboard antibody titrations, the F12 mAb titer was 12,000 with rBoIFN-alphaC and only 600 with rBoIFN-alpha1. Since these IFNs differ in their amino acid sequence at positions 11, 16 and 19 of the amino terminus, only these amino acids could account for the different neutralization titers, and they should participate in antibody binding. According to the three-dimensional structure described for human and murine IFNs, these amino acids are located in the alpha helix A; amino acids 16 and 19 of the bovine IFNs would be expected to be exposed and could bind to the antibody directly. The amino acid at position 11 forms a hydrogen bond in human IFNs-alpha and it is possible that, in bovine IFNs-alpha, the F12 mAb, binding near position 11, would disturb this hydrogen bond, resulting in the difference in the extent of neutralization observed.