996 resultados para Alummium-silicon Alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An as-cast Al-7 % Si alloy was processed by high-pressure torsion (HPT) for up to 10 turns at temperatures of 298 or 445 K. The HPT-processed samples had ultrafine-grained structures and they were tested in tension at room temperature at various strain rates in the range from 1.0 x 10(-4) to 1.0 x 10(-2) s(-1). The contributions of grain boundary sliding (GBS) to the total strain were measured directly using atomic force microscopy. Samples simultaneously showing both high strength and high ductility contained the highest fractions of high-angle grain boundaries (HAGB) and exhibited the highest contributions from GBS, whereas samples showing high strength but low ductility gave negligible values for the sliding contributions. It is concluded that high strength and high ductility require both an ultrafine grain size and a high fraction of HAGB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equiatomic NiTiCuFe multi-component alloy with simple body-centered cubic (bcc) and face-centered cubic solid-solution phases in the microstructure was processed by vacuum induction melting furnace under dynamic Ar atmosphere. High-temperature uniaxial compression experiments were conducted on it in the temperature range of 1073 K to 1303 K (800 degrees C to 1030 degrees C) and strain rate range of 10(-3) to 10(-1) s(-1). The data generated were analyzed with the aid of the dynamic materials model through which power dissipation efficiency and instability maps were generated so as to identify the governing deformation mechanisms that are operative in different temperature-strain rate regimes with the aid of complementary microstructural analysis of the deformed specimens. Results indicate that the stable domain for the high temperature deformation of the multi-component alloy occurs in the temperature range of 1173 K to 1303 K (900 degrees C to 1030 degrees C) and (epsilon) over dot range of 10(-3) to 10(-1.2) s(-1), and the deformation is unstable at T = 1073 K to 1153 K (800 degrees C to 880 degrees C) and (epsilon) over dot = 10(-3) to 10(-1.4) s(-1) as well as T = 1223 K to 1293 K (950 degrees C to 1020 degrees C) and (epsilon) over dot = 10(-1.4) to 10(-1) s(-1), with adiabatic shear banding, localized plastic flow, or cracking being the unstable mechanisms. A constitutive equation that describes the flow stress of NiTiCuFe multi-component alloy as a function of strain rate and deformation temperature was also determined. (C) The Minerals, Metals & Materials Society and ASM International 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow characteristics of a near eutectic Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of the flow behavior on heat treatment is studied by testing the alloy in non-heat treated (NHT) and heat treated (HT) conditions. The heat treatment has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. It is observed that the strength of the alloy increases with increase in strain rate and it increases more rapidly above the strain rate of 10(-1) s(-1) in HT condition at all the temperatures, and at 100 degrees C and 200 degrees C in NHT condition. The thermally dependent process taking place in the HT matrix is responsible for the observed greater SRS in HT condition. The alloy in HT condition exhibits a larger work hardening rate than in NHT condition during initial stages of straining. However, the hardening rate decreases more sharply at higher strains in HT condition due to precipitate shearing and higher rate of Si particle fracture. Thermal hardening is observed at 200 degrees C in NHT condition due to precipitate formation, which results in increased SRS at higher temperatures. Thermal softening is observed in HT condition at 200 C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by a finite element method support the experimentally observed particle and matrix fracture behavior. A negative SRS and serrated flow are observed in the lower strain rate regime (3 x 10(-4)-10(-2) s(-1)) at RT and 100 degrees C, in both NHT and HT conditions. The observations show that both dynamic strain aging (DSA) and precipitate shearing play a role in serrated flow. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between the as-cast microstructure and creep behaviour of the heat-resistant MRI230D Mg alloy produced by two different casting technologies is investigated. The alloy in both ingot-casting (IC) and high pressure die-casting (HPDC) conditions consists of alpha-Mg, 06 ((Mg,AI)(2)Ca), Al-Mn and Sn-Mg-Ca rich phases. However, the HPDC alloy resulted in relatively finer grain size and higher volume fraction of finer, denser network of eutectic C36 phase in the as-cast microstructure as compared to that of the IC alloy. The superior creep resistance exhibited by the HPDC alloy at all the stress levels and temperatures employed in the present investigation was attributed to the more effective dispersion strengthening effect caused by the presence of finer and denser network of the C36 phase. The increased amount of the eutectic C36 phase was the only change observed in the microstructures of both alloys following creep tests. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A(2)* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work highlights the role of globular microstructure on the workability of A356 aluminum alloy at elevated temperature. The hot deformation behavior was studied by isothermal hot compression tests in the temperature range 573 K to 773 K (300 A degrees C to 500 A degrees C) and strain rate range of 0.001 to 10 s(-1). The flow stress data obtained from the tests were used to estimate the strain rate sensitivity and strain rate hardening. Flow stress analysis of the alloy shows that the effect of temperature on strain hardening is more significant at lower strain levels and strain rate sensitivity is independent of strain. The results also reveal that the flowability of conventionally cast alloy increases after changing the dendritic microstructure into a globular structure through semisolid processing route. Thixocast alloy exhibits lower yield strength and higher elongation at elevated temperature in comparisons to conventionally cast values. This property has an important implication toward thixo-forming at an elevated temperature. (C) The Minerals, Metals & Materials Society and ASM International 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, semisolid manufacturing has emerged as an attractive option for near net shape forming of components with aluminum alloys. In this class of processes, the key to success lies mainly in the understanding of rheological behavior of the semi-solid slurry in the temperature range between liquidus and solidus. The present study focuses on the non-Newtonian flow behavior of the pseudo plastic slurry of Al-7Si-0.3Mg alloy for a wide shear range using a high-temperature Searle-type rheometer. The rheological behavior of the slurry is studied with respect to relevant process variables and microstructural features such as shear rate, shear duration, temperature history, primary particle size, shape, and their distribution. The experiments performed are isothermal tests, continuous cooling tests, shear jump tests, and shear time tests. The continuous cooling experiments are aimed toward studying the viscosity and shear stress evolution within the slurry matrix with increasing solid fraction at a constant shear rate. Three different cooling rates are considered and their effect on flow behavior of the slurry was studied under iso-shear condition. Descending shear jump experiments are performed to understand the viscous instability of the slurry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of grain refinement in a AZ31 Mg alloy subjected to hot groove rolling is investigated up to large strain (epsilon(t) similar to 2.5). The alloy shows enhanced yield strength without compromising ductility. The change in strain path during rolling has resulted in significant weakening of basal texture. The microstructure analyses show that dynamic recrystallization (DRX) contributed significantly to grain refinement and hence to the observed mechanical properties. The combined effects of DRX and texture evolution on mechanical properties have been addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering of electronic energy band structure in graphene based nanostructures has several potential applications. Substrate induced bandgap opening in graphene results several optoelectronic properties due to the inter-band transitions. Various defects like structures, including Stone-Walls and higher-order defects are observed when a graphene sheet is exfoliated from graphite and in many other growth conditions. Existence of defect in graphene based nanostructures may cause changes in optoelectronic properties. Defect engineered graphene on silicon system are considered in this paper to study the tunability of optoelectronic properties. Graphene on silicon atomic system is equilibrated using molecular dynamics simulation scheme. Based on this study, we confirm the existence of a stable super-lattice. Density functional calculations are employed to determine the energy band structure for the super-lattice. Increase in the optical energy bandgap is observed with increasing of order of the complexity in the defect structure. Optical conductivity is computed as a function of incident electromagnetic energy which is also increasing with increase in the defect order. Tunability in optoelectronic properties will be useful in understanding graphene based design of photodetectors, photodiodes and tunnelling transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMA-epoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of microstructure and phase formation in equiatomic Ti20Fe20Ni20Co20Cu20 high entropy alloy synthesised by conventional arc melting followed with suction casting and ball milling with spark plasma sintering route is distinctly different. The cast microstructure exhibits one body centre cubic and two face centre cubic high entropy phases based on titanium, cobalt and copper respectively along with a eutectic containing Ti2Ni type Laves phase. On the contrary, spinodal decomposed microstructure consisting of cobalt and copper solid solution is obtained in the sintered sample. However, long term annealing of cast sample at 950 degrees C reveals a eutectoid transformation with different phases than the cast sample. The aforementioned observations are discussed using CALPHAD thermodynamical approach and available literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first successful attempt to produce Mg-Ce alloys of different texture through different processing routes while keeping the grain size and grain size distribution same. Tensile data shows that contribution of texture to ductility enhancement is primary and that of grain refinement is secondary. The texture resulting from multi-axial forging of extruded billets followed by annealing exhibits the highest ductility (similar to 40%) at room temperature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molten A356 aluminum alloy flowing on an oblique plate is water cooled from underneath. The melt partially solidifies on plate wall with continuous formation of columnar dendrites. These dendrites are continuously sheared off into equiaxed/fragmented grains and carried away with the melt by producing semisolid slurry collected at plate exit. Melt pouring temperature provides required solidification whereas plate inclination enables necessary shear for producing slurry of desired solid fraction. A numerical model concerning transport equations of mass, momentum, energy and species is developed for predicting velocity, temperature, macrosegregation and solid fraction. The model uses FVM with phase change algorithm, VOF and variable viscosity. The model introduces solid phase movement with gravity effect as well. Effects of melt pouring temperature and plate inclination on hydrodynamic and thermo-solutal behaviors are studied subsequently. Slurry solid fractions at plate exit are 27%, 22%, 16%, and 10% for pouring temperatures of 620 degrees C, 625 degrees C, 630 degrees C, and 635 degrees C, respectively. And, are 27%, 25%, 22%, and 18% for plate inclinations of 30, 45, 60, and 75, respectively. Melt pouring temperature of 625 degrees C with plate inclination of 60 generates appropriate quality of slurry and is the optimum. Both numerical and experimental results are in good agreement with each other. (C) 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.