985 resultados para Alta presión
Resumo:
This work has as main objective to show all the particularities regarding the Three-phase Power Summation Method, used for load flow calculation, in what it says respect to the influence of the magnetic coupling among the phases, as well as to the losses presented in all the existent transformers in the feeder to be analyzed. Besides, its application is detailed in the study of the short-circuits, that happen in the presence of high impedance values, which possess a problem, that is its difficult detection and consequent elimination on the part of common devices of protection. That happens due to the characteristic presented by the current of short¬ circuit, in being generally of the same order of greatness that the load currents. Results of simulations accomplished in several situations will be shown, objectifying a complete analysis of the behavior of the proposed method in several types of short-circuits. Confront of the results obtained by the method with results of another works will be presented to verify its effectiveness
Resumo:
Com o objetivo de avaliar os efeitos de thidiazuron e de ácido giberélico nas características dos cachos de uvas 'Rubi', foi conduzido um experimento, utilizando-se de thidiazuron a 5 e 10 mg.L-1 e ácido giberélico a 20mg.L-1, combinados ou não. As aplicações dos produtos foram realizadas aos 14; 21 ou 28 dias após o pleno florescimento, por meio de imersão dos cachos. Todos os tratamentos com reguladores de crescimento aumentaram a massa dos cachos. A massa dos bagos e dos engaços foi identicamente influenciada pela aplicação dos produtos, porém menos evidente, quando as aplicações foram realizadas aos 28 dias após o pleno florescimento. As aplicações de thidiazuron a 5mg.L-1, aos 14 ou 21 dias após o florescimento, não diferiram das aplicações de ácido giberélico para as variáveis estudadas. Não houve diferenças significativas para as variáveis teor de sólidos solúveis totais, acidez titulável, porém os tratamentos com thidiazuron retardaram a maturação em até 7 dias.
Resumo:
Hard metals are the composite developed in 1923 by Karl Schröter, with wide application because high hardness, wear resistance and toughness. It is compound by a brittle phase WC and a ductile phase Co. Mechanical properties of hardmetals are strongly dependent on the microstructure of the WC Co, and additionally affected by the microstructure of WC powders before sintering. An important feature is that the toughness and the hardness increase simultaneously with the refining of WC. Therefore, development of nanostructured WC Co hardmetal has been extensively studied. There are many methods to manufacture WC-Co hard metals, including spraying conversion process, co-precipitation, displacement reaction process, mechanochemical synthesis and high energy ball milling. High energy ball milling is a simple and efficient way of manufacturing the fine powder with nanostructure. In this process, the continuous impacts on the powders promote pronounced changes and the brittle phase is refined until nanometric scale, bring into ductile matrix, and this ductile phase is deformed, re-welded and hardened. The goal of this work was investigate the effects of highenergy milling time in the micro structural changes in the WC-Co particulate composite, particularly in the refinement of the crystallite size and lattice strain. The starting powders were WC (average particle size D50 0.87 μm) supplied by Wolfram, Berglau-u. Hutten - GMBH and Co (average particle size D50 0.93 μm) supplied by H.C.Starck. Mixing 90% WC and 10% Co in planetary ball milling at 2, 10, 20, 50, 70, 100 and 150 hours, BPR 15:1, 400 rpm. The starting powders and the milled particulate composite samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to identify phases and morphology. The crystallite size and lattice strain were measured by Rietveld s method. This procedure allowed obtaining more precise information about the influence of each one in the microstructure. The results show that high energy milling is efficient manufacturing process of WC-Co composite, and the milling time have great influence in the microstructure of the final particles, crushing and dispersing the finely WC nanometric order in the Co particles
Resumo:
The need to build durable structures and resistant to harsh environments enabled the development of high strength concrete, these activities generate a high cement consumption, which implies factor in CO2 emissions. Often the desired strength is not achieved using only the cement composition. This study aims to evaluate the influence of pozzolans with the addition of metakaolin on the physical mechanics of high strength concrete comparing them with the standard formulation. Assays were performed to characterize the aggregates according to NBR 7211, evaluation of cement and coarse aggregate through the trials of petrography (NBR 15577-3/08) and alkali-aggregate reaction (NBR 15577-05/08). Specimens were fabricated according to NBR 5738-1/04 with additions of 0%, 4%, 6%, 8% and 10% of metakaolin for cement mortars CP V in the formulations. For evaluation of the concrete hardened in fresh state and scattering assays were performed and compressive strength in accordance with the NBR 7223/1992 and NBR 5739-8/94 respectively. The results of the characterization of aggregates showed good characteristics regarding size analysis and petrography, as well as potentially innocuous as the alkali-aggregate reaction. As to the test of resistance to compression, all the formulations with the addition of metakaolin showed higher value at 28 days of disruption compared with the standard formulation. These results present an alternative to reduce CO2 emissions, and improvements in the quality and durability of concrete, because the fine particle size of metakaolin provides an optimal compression of the mass directly influencing the strength and rheology of the dough
Resumo:
The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions
Resumo:
As plantas aquáticas têm papel fundamental no equilíbrio dos ecossistemas, porém seu crescimento desequilibrado pode obstruir canais, represas e reservatórios e afetar múltiplos usos da água. em relação a plantas aquáticas submersas, a utilização de medidas de controle torna-se mais complexa, em face da dificuldade em mapear e quantificar volumetricamente as áreas colonizadas. Nessas situações, considera-se que o uso de dados hidroacústicos possibilite o mapeamento e a mensuração dessas áreas, auxiliando na elaboração de propostas de manejo sustentáveis desse tipo de vegetação aquática. Assim, o presente trabalho utilizou dados acústicos e a técnica de krigagem para realizar a inferência espacial do biovolume de plantas aquáticas submersas. Os dados foram obtidos em três levantamentos ecobatimétricos realizados em uma área de estudos localizada no rio Paraná, caracterizada por condições favoráveis para proliferação de vegetação aquática submersa e dificuldade de navegação. Para delimitar as áreas caracterizadas pela presença de plantas aquáticas submersas, utilizou-se uma imagem multiespectral de alta resolução espacial World View-2. O mapeamento do biovolume das plantas aquáticas submersas nas áreas de ocorrência do fenômeno foi realizado a partir da inferência do biovolume por krigagem e do fatiamento dos valores inferidos em intervalos de 15%. A partir do mapa gerado, foi possível identificar os locais de maior concentração de macrófitas submersas, com predominância de valores de biovolume entre 15-30% e 30-45%, confirmando a viabilidade da utilização da krigagem na inferência espacial do biovolume, a partir de medidas ecobatimétricas georreferenciadas e com o suporte de imagem de alta resolução espacial.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The spatial resolution improvement of orbital sensors has broadened considerably the applicability of their images in solving urban areas problems. But as the spatial resolution improves, the shadows become even a more serious problem especially when detailed information (under the shadows) is required. Besides those shadows caused by buildings and houses, clouds projected shadows are likely to occur. In this case there is information occlusion by the cloud in association with low illumination and contrast areas caused by the cloud shadow on the ground. Thus, it's important to use efficient methods to detect shadows and clouds areas in digital images taking in count that these areas care for especial processing. This paper proposes the application of Mathematical Morphology (MM) in shadow and clouds detection. Two parts of a panchromatic QuickBird image of Cuiab-MT urban area were used. The proposed method takes advantage of the fact that shadows (low intensity - dark areas) and clouds (high intensity - bright areas) represent the bottom and top, respectively, of the image as it is thought to be a topographic surface. This characteristic allowed MM area opening and closing operations to be applied to reduce or eliminate the bottom and top of the topographic surface.
Resumo:
This research presents a methodology for prediction of building shadows cast on urban roads existing on high-resolution aerial imagery. Shadow elements can be used in the modeling of contextual information, whose use has become more and more common in image analysis complex processes. The proposed methodology consists in three sequential steps. First, the building roof contours are manually extracted from an intensity image generated by the transformation of a digital elevation model (DEM) obtained from airborne laser scanning data. In similarly, the roadside contours are extracted, now from the radiometric information of the laser scanning data. Second, the roof contour polygons are projected onto the adjacent roads by using the parallel projection straight lines, whose directions are computed from the solar ephemeris, which depends on the aerial image acquisition time. Finally, parts of shadow polygons that are free from building perspective obstructions are determined, given rise to new shadow polygons. The results obtained in the experimental evaluation of the methodology showed that the method works properly, since it allowed the prediction of shadow in high-resolution imagery with high accuracy and reliability.
Resumo:
A Center for Weather Forecast and Climatic Studies of National Institute for Space Research (CPTEC/INPE) has provided to the Brazilian Geodetic community, since 2004, an alternative to correct the GNSS observables from the tropospheric refraction. Numerical Weather Prediction (NWP) Model is used to generate Zenital Tropospheric Delay (ZTD). For the version 1, it was developed a model with horizontal resolution of 100 km, which was updated with Eta model, with resolution of 20 km. This paper provides the most significative details of the current version, as well an evaluation of its quality, using for such ZTD estimates from GPS data collect at RBMC. Comparing to the old version, considerable improvement could be observed from the new model, mainly in Brasilia and Curitiba, reaching up to 55% improvement. When all stations were used in the quality control, almost null bias and RMS of about 4 to 5 cm could be observed.
Resumo:
One of the main drawbacks of the GPS accuracy for L1 users is the error due to ionosphere. This error depends on the total electron content presents in the ionosphere, as well as of the carrier frequency. Some models have been developed to correct GPS observables of the systematic error due to the ionosphere. The model more known and used is the Klobuchar model, which corrected 50-60% of the ionospheric error approximately. Alternatively, IGS (International GNSS Service) also has developed a model called Global Ionospheric Map (GIM). These maps, in format IONEX, are available in the site of the IGS, and one of the applications of them is to correct the GPS observables of the error due to ionosphere. This work aims at evaluating the quality of GPS point positioning using the IGS ionospheric model in the southerm region of Brazil. Tests carried out had shown an average improvement in the horizontal and vertical determination of 44% and 77%, respectively, when GIM is used in the point positioning.
Resumo:
The ionosphere is a major source of systematic error in the GPS observables. As this error is directly proportional to the TEC (Total Electron Content), the quality of GPS positioning (especially with single frequency receivers) can be significantly affected by regular changes of TEC. The ionosphere factor is even more relevant in the Brazilian region, where ionospheric phenomena, such as the Equatorial Anomaly, intensify these variations. Taking the above mentioned factors into account, experiments were conducted in this research to evaluate the daily and seasonal behavior of the TEC and the point positioning with GPS (single frequency) in periods of high and low solar activity in the Brazilian region. The results showed a direct correlation between the decrease in electrons density in the ionosphere (period of low solar activity) and improvement in positioning accuracy, as well as a large influence of Equatorial Anomaly on the results of point positioning.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)