941 resultados para Algebraic lattices


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational model for isothermal axisymmetric turbulent flow in a quarl burner is set up using the CFD package FLUENT, and numerical solutions obtained from the model are compared with available experimental data. A standard k-e model and and two versions of the RNG k-e model are used to model the turbulence. One of the aims of the computational study is to investigate whether the RNG based k-e turbulence models are capable of yielding improved flow predictions compared with the standard k-e turbulence model. A difficulty is that the flow considered here features a confined vortex breakdown which can be highly sensitive to flow behaviour both upstream and downstream of the breakdown zone. Nevertheless, the relatively simple confining geometry allows us to undertake a systematic study so that both grid-independent and domain-independent results can be reported. The systematic study includes a detailed investigation of the effects of upstream and downstream conditions on the predictions, in addition to grid refinement and other tests to ensure that numerical error is not significant. Another important aim is to determine to what extent the turbulence model predictions can provide us with new insights into the physics of confined vortex breakdown flows. To this end, the computations are discussed in detail with reference to known vortex breakdown phenomena and existing theories. A major conclusion is that one of the RNG k-e models investigated here is able to correctly capture the complex forward flow region inside the recirculating breakdown zone. This apparently pathological result is in stark contrast to the findings of previous studies, most of which have concluded that either algebraic or differential Reynolds stress modelling is needed to correctly predict the observed flow features. Arguments are given as to why an isotropic eddy-viscosity turbulence model may well be able to capture the complex flow structure within the recirculating zone for this flow setup. With regard to the flow physics, a major finding is that the results obtained here are more consistent with the view that confined vortex breakdown is a type of axisymmetric boundary layer separation, rather than a manifestation of a subcritical flow state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article describes the synthesis, structure and magnetic investigations of a series of metal-organic framework compounds formed with Mn+2 and Ni+2 ions. The structures, determined using the single crystal X-ray diffraction, indicated that the structures possess two- and three-dimensional structures with magnetically active dimers, tetramers, chains, two-dimensional layers connected by polycarboxylic acids. These compounds provide good examples for the investigations of magnetic behaviour. Magnetic studies have been carried out using SQUID magnetometer in the range of 2-300 K and the behaviour indicates a predominant anti-ferromagnetic interactions, which appears to differ based on the M-O-C-O-M and/or the M-O-M (M = metal ions) linkages. Thus, compounds with carboxylate (Mn-O-C-O-Mn) connected ones, [C3N2H [Mn(H2O)''C6H3(COO)(3)''], I, [''Mn(H2O (3)''aEuroeC(12)H(8)O(COO)(2)'']center dot H2O, II, [''Mn(H2O)''aEuroeC(12)H(8)O(COO)(2)''], III, show simple anti-ferromagnetic behaviour. The compounds with Mn-O/OH-Mn connected dimer and tetramer units in [NaMn''C6H3(COO)(3)''], IV, [Mn-2(A mu(3)-OH) (H2O)(2)''C6H3(COO)(3)'']center dot 2H(2)O, V, show canted-antiferromagnetic and anti-ferromagnetic behaviour, respectively. The presence of infinite one-dimensional -Ni-OH-Ni- chains in the compound, [Ni-2(H2O)(A mu(3)-OH)(2)(C8H5NO4], VI, gives rise to ferromagnet-like behaviour at low temperatures. The compounds, [Mn-3''C6H3(COO)(3)''(2)], VII and [''Mn(OH)''(2)''C12H8O(COO)(2)''], VIII, have two-dimensional infinite -Mn-O/OH-Mn- layers with triangular magnetic lattices, which resemble the Kagome and brucite-like layer. The magnetic studies indicated canted-antiferromagnetic behaviour in both the cases. Variable temperature EPR and theoretical magnetic modelling studies have been carried out on selected compounds to probe the nature of the magnetic species and their interactions with them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the algebraic locus of the coupler curve of a PRRP planar linkage, in this paper, a kinematic theory is developed for planar, radially foldable closed-loop linkages. This theory helps derive the previously invented building blocks, which consist of only two inter-connected angulated elements, for planar foldable structures. Furthermore, a special case of a circumferentially actuatable foldable linkage (which is different from the previously known cases) is derived from the theory, A quantitative description of some known and some new properties of planar foldable linkages, including the extent of foldability, shape-preservation of the interior polygons, multi-segmented assemblies and heterogeneous circumferential arrangemants, is also presented. The design equations derived here make the conception of even complex planar radially foldable linkages systematic and straightforward. Representative examples are presented to illustrate the usage of the design equations and the construction of prototypes. The current limitations and some possible extensions of the theory are also noted. (c) 2007, Elsevier Ltd. All ri-hts reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common trick for designing faster quantum adiabatic algorithms is to apply the adiabaticity condition locally at every instant. However it is often difficult to determine the instantaneous gap between the lowest two eigenvalues, which is an essential ingredient in the adiabaticity condition. In this paper we present a simple linear algebraic technique for obtaining a lower bound on the instantaneous gap even in such a situation. As an illustration, we investigate the adiabatic un-ordered search of van Dam et al. [17] and Roland and Cerf [15] when the non-zero entries of the diagonal final Hamiltonian are perturbed by a polynomial (in log N, where N is the length of the unordered list) amount. We use our technique to derive a bound on the running time of a local adiabatic schedule in terms of the minimum gap between the lowest two eigenvalues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. Due to the constraint between the pull force, peel angle and the peel force, the equations of motion derived earlier fall into the category of differential-algebraic equations (DAE) requiring an appropriate algorithm for its numerical solution. By including the kinetic energy arising from the stretched part of the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics itself, thus circumventing the need to use any special algorithm. In the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for the earlier singular equations. We find that mass has a strong influence on the dynamics of the model rendering periodic solutions to chaotic and vice versa. Apart from the rich dynamics, the model reproduces several qualitative features of the different waveforms of the peel force function as also the decreasing nature of force drop magnitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of reconstruction of a refractive-index distribution (RID) in optical refraction tomography (ORT) with optical path-length difference (OPD) data is solved using two adaptive-estimation-based extended-Kalman-filter (EKF) approaches. First, a basic single-resolution EKF (SR-EKF) is applied to a state variable model describing the tomographic process, to estimate the RID of an optically transparent refracting object from noisy OPD data. The initialization of the biases and covariances corresponding to the state and measurement noise is discussed. The state and measurement noise biases and covariances are adaptively estimated. An EKF is then applied to the wavelet-transformed state variable model to yield a wavelet-based multiresolution EKF (MR-EKF) solution approach. To numerically validate the adaptive EKF approaches, we evaluate them with benchmark studies of standard stationary cases, where comparative results with commonly used efficient deterministic approaches can be obtained. Detailed reconstruction studies for the SR-EKF and two versions of the MR-EKF (with Haar and Daubechies-4 wavelets) compare well with those obtained from a typically used variant of the (deterministic) algebraic reconstruction technique, the average correction per projection method, thus establishing the capability of the EKF for ORT. To the best of our knowledge, the present work contains unique reconstruction studies encompassing the use of EKF for ORT in single-resolution and multiresolution formulations, and also in the use of adaptive estimation of the EKF's noise covariances. (C) 2010 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a study of ultra-cold Fermi gases in different systems. This thesis is focused on exotic superfluid states, for an example on the three component Fermi gas and the FFLO phase in optical lattices. In the two-components case, superfluidity is studied mainly in the case of the spin population imbalanced Fermi gases and the phase diagrams are calculated from the mean-field theory. Different methods to detect different phases in optical lattices are suggested. In the three-component case, we studied also the uniform gas and harmonically trapped system. In this case, the BCS theory is generalized to three-component gases. It is also discussed how to achieve the conditions to get an SU(3)-symmetric Hamiltonian in optical lattices. The thesis is divided in chapters as follows: Chapter 1 is an introduction to the field of cold quantum gases. In chapter 2 optical lattices and their experimental characteristics are discussed. Chapter 3 deals with two-components Fermi gases in optical lattices and the paired states in lattices. In chapter 4 three-component Fermi gases with and without a harmonic trap are explored, and the pairing mechanisms are studied. In this chapter, we also discuss three-component Fermi gases in optical lattices. Chapter 5 devoted to the higher order correlations, and what they can tell about the paired states. Chapter 6 concludes the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set of sufficient conditions to construct lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for lambda = 2(a), a is an element of N is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I examine one commonly used class of methods for the analytic approximation of cellular automata, the so-called local cluster approximations. This class subsumes the well known mean-field and pair approximations, as well as higher order generalizations of these. While a straightforward method known as Bayesian extension exists for constructing cluster approximations of arbitrary order on one-dimensional lattices (and certain other cases), for higher-dimensional systems the construction of approximations beyond the pair level becomes more complicated due to the presence of loops. In this thesis I describe the one-dimensional construction as well as a number of approximations suggested for higher-dimensional lattices, comparing them against a number of consistency criteria that such approximations could be expected to satisfy. I also outline a general variational principle for constructing consistent cluster approximations of arbitrary order with minimal bias, and show that the one-dimensional construction indeed satisfies this principle. Finally, I apply this variational principle to derive a novel consistent expression for symmetric three cell cluster frequencies as estimated from pair frequencies, and use this expression to construct a quantitatively improved pair approximation of the well-known lattice contact process on a hexagonal lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacillus subtilis BacB is an oxidase that is involved in the production of the antibiotic bacilysin. This protein contains two double-stranded beta-helix (cupin) domains fused in a compact arrangement. BacB crystallizes in three crystal forms under similar crystallization conditions. An interesting observation was that a slight perturbation of the crystallization droplet resulted in the nucleation of a different crystal form. An X-ray absorption scan of BacB suggested the presence of cobalt and iron in the crystal. Here, a comparative analysis of the different crystal forms of BacB is presented in an effort to identify the basis for the different lattices. It is noted that metal ions mediating interactions across the asymmetric unit dominate the different packing arrangements. Furthermore, a normalized B-factor analysis of all the crystal structures suggests that the solvent-exposed metal ions decrease the flexibility of a loop segment, perhaps influencing the choice of crystal form. The residues coordinating the surface metal ion are similar in the triclinic and monoclinic crystal forms. The coordinating ligands for the corresponding metal ion in the tetragonal crystal form are different, leading to a tighter packing arrangement. Although BacB is a monomer in solution, a dimer of BacB serves as a template on which higher order symmetrical arrangements are formed. The different crystal forms of BacB thus provide experimental evidence for metal-ion-mediated lattice formation and crystal packing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Silver code has captured a lot of attention in the recent past,because of its nice structure and fast decodability. In their recent paper, Hollanti et al. show that the Silver code forms a subset of the natural order of a particular cyclic division algebra (CDA). In this paper, the algebraic structure of this subset is characterized. It is shown that the Silver code is not an ideal in the natural order but a right ideal generated by two elements in a particular order of this CDA. The exact minimum determinant of the normalized Silver code is computed using the ideal structure of the code. The construction of Silver code is then extended to CDAs over other number fields.