945 resultados para AlInGaN quaternary alloy
Resumo:
Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.
The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective α-alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all–carbon α-quaternary cyclobutanones in good to excellent yields and enantioselectivities.
Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of enolate precursors, and their application in palladium–catalyzed asymmetric allylic alkylation to yield a variety of α-quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.
Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic β-ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with N-aryl-phosphoramidite ligands.
Resumo:
We have measured sputtering yields and angular distributions of sputtered atoms from both the solid and liquid phases of gallium, indium, and the gallium-indium eutectic alloy. This was done by Rutherford backscattering analysis of graphite collector foils. The solid eutectic target shows a predominance of indium crystallites on its surface which have to be sputtered away before the composition of the sputtered atoms equals the bulk target composition. The size of the crystallites depends upon the conditions under which the alloy is frozen. The sputtering of the liquid eutectic alloy by 15 keV Ar+ results in a ratio of indium to gallium sputtering yields which is 28 times greater than would be expected from the target stoichiometry. Furthermore, the angular distribution of gallium is much more sharply peaked about the normal to the target surface than the indium distribution. When the incident Ar+ energy is increased to 25 keV, the gallium distribution broadens to the same shape as the indium distribution. With the exception of the sharp gallium distribution taken from the liquid eutectic at 15 keV, all angular distributions from liquid targets fit a cos2 θ function. An ion-scattering-spectroscopy analysis of the liquid eutectic alloy reveals a surface layer of almost pure indium. A thermodynamic explanation for this highly segregated layer is discussed. The liquid eutectic alloy provides us with a unique target system which allows us to estimate the fraction of sputtered material which comes from the first monolayer of the surface.
Resumo:
Sb-Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb-Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 380 nm are read out by a dynamic setup, the laser wavelength is 780 nm and the numerical aperture of pickup lens is 0.45. The effects of the Sb-Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb-Bi mask layer is about 0.5 mW, and the corresponding carrier-to-noise ratio is about 20 dB at the film thickness of 50 nm. The super-resolution mechanism of the Sb-Bi alloy mask layer is discussed based on its temperature dependence of reflection.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In nickel-based superalloys, substitutional solute species have a strong impact on in service mechanical properties as well as on oxidation and corrosion resistances. In alloy 718, recent studies carried out by tensile tests highlighted the fact that refractory solute species are able to interact strongly with mobile dislocations during plastic deformation, generating dynamic strain ageing, and, in wide ranges of tests temperatures and strain rates, Portevin-Le Chatelier effect. The precise nature of the substitutional element responsible for such a dynamic interaction is still subject to debate. We addressed this question by means of mechanical spectroscopy studies of alloy 718 and various related alloys corresponding to monitored changes in the chemical composition. Only a single internal friction relaxation peak has been observed for all the studied alloys. By analyzing the damping behavior of these alloys at different imposed solicitation frequencies by sweeping a large temperatures range, the activation energies of the relaxation process and the type of mechanism involved have been determined. The process is a "Zener relaxation" in the alloys, i.e. a substitutional atoms dipole reorientation under applied stress. The results tend to prove that Niobium is not involved in the relaxation process whereas Molybdenum content seems to play an important role in the relaxation intensity.