977 resultados para Air analysis
Resumo:
Achievement goal orientation represents an individual's general approach to an achievement situation, and has important implications for how individuals react to novel, challenging tasks. However, theorists such as Yeo and Neal (2004) have suggested that the effects of goal orientation may emerge over time. Bell and Kozlowski (2002) have further argued that these effects may be moderated by individual ability. The current study tested the dynamic effects of a new 2x2 model of goal orientation (mastery/performance x approach/avoidance) on performance on a simulated air traffic control (ATC) task, as moderated by dynamic spatial ability. One hundred and one first-year participants completed a self-report goal orientation measure and computerbased dynamic spatial ability test and performed 30 trials of an ATC task. Hypotheses were tested using a two-level hierarchical linear model. Mastery-approach orientation was positively related to task performance, although no interaction with ability was observed. Performance-avoidance orientation was negatively related to task performance; this association was weaker at high levels of ability. Theoretical and practical implications will be discussed.
Resumo:
A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.
Resumo:
An economic analysis has been performed to establish when it is advantageous to use structured packing in air separation plant. A model of a low pressure cycle was developed to calculate the power saved when packing is used, and cost models were developed for the columns and cold box. The rate of return was calculated on the extra investment required for a packed plant based on the annual power saving. Structured packing was found to be economic only in larger plants, where economies of scale mean that the increased capital cost becomes less significant compared with the power saved. It was also found that different sized plants favour different packings. The analysis identified that the packing variable with the biggest impact on the economic balance was the efficiency and that increasing the efficiency of current packings could enhance their balance in air distillation. A new packing was therefore developed to have a higher efficiency than conventional ones. The vapour phase resistance was targeted for reduction, since most packing models predict this to be dominant. The final shape was chosen as the easiest and most economic to make. It has converging and diverging channels and was manufactured in two specific areas and with two block heights by Tianjin University Packing Factory. A 0.3 m diameter distillation column test rig was designed, built and commissioned with the standard Sulzer Mellapak 500YW. It was then used to test the new packing alongside some standard ones. Because the packings had different specific areas, correlations of published results were developed to allow a true comparison to be made. The test results show that, unexpectedly, the packings with 0.1 m high blocks have an efficiency about 8% greater than the standard 0.2 m blocks. The new shape as implemented in the 350Y packing shows an additional 7% greater efficiency, so it is 15% better than a standard packing with the same area. It has a better efficiency than the Mellapak 500YW and the higher capacity associated with its lower area. The new 500Y did not show a significant advantage.
Resumo:
This doctoral research project examines the effects that geographical transience has on Royal Air Force families. The methodology employed in this exploratory and qualitative study consisted largely of open-ended interview questions but also included a series of demographic variables. In total, 29 RAF personnel without families, 33 RAF personnel with families, 33 RAF spouses, and 15 RAF children participated in this research (N = 110). All respondents volunteered to take part in the study and were based in the United Kingdom at the time of data collection. The interviews were transcribed and content coded according to six major relocation themes arising from the literature (change, tasks, support, coping, difficulty, and outcome). QSR NVIVO 2.0, a qualitative data analysis software package, was used to facilitate the process. Through the utilisations of qualitative methodology, the researcher was able to offer various novel and reoccurring variables that appear to play an important role (at least subjectively) in relocation. Additionally, frequencies associated with these factors were presented. The findings were integrated with those from the literature in order to offer an initial comparison and differentiation between civilian and military samples. The main theoretical contributions were the introduction of the concept of mobile mentality, the creation of a novel relocation model that takes familial interaction into account, and the development of a taxonomy for the classification of relocation outcomes. Finally, additional observations, recommendations for future research, and practical implications are reviewed.
Resumo:
The research was instigated by the Civil Aviation Authority (CAA) to examine the implications for air traffic controllers' (ATCO) job satisfaction of the possible introduction of systems incorporating computer-assisted decision making. Additional research objectives were to assess the possible costs of reductions in ATCO job satisfaction, and to recommend appropriate task allocation between ATCOs and computer for future systems design (Chapter 1). Following a review of the literature (Chapter 2) it is argued that existing approaches to systems and job design do not allow for a sufficiently early consideration of employee needs and satisfactions in the design of complex systems. The present research develops a methodology for assessing affective reactions to an existing system as a basis for making reommendations for future systems design (Chapter 3). The method required analysis of job content using two techniques: (a) task analysis (Chapter 4.1) and (b) the Job Diagnostic Survey (JDS). ATCOs' affective reactions to the several operational positions on which they work were investigated at three levels of detail: (a) Reactions to positions, obtained by ranking techniques (Chapter 4.2); (b) Reactions to job characteristics, obtained by use of JDS (Chapter 4.3); and (c) Reactions to tasks, obtained by use of Repertory Grid technique (Chapter 4.4). The conclusion is drawn that ATCOs' motivation and satisfaction is greatly dependent on the presence of challenge, often through tasks requiring the use of decision making and other cognitive skills. Results suggest that the introduction of systems incorporating computer-assisted decision making might result in financial penalties for the CAA and significant reductions in job satisfaction for ATCOs. General recommendations are made for allocation of tasks in future systems design (Chapter 5).
Resumo:
Electrically excited synchronous machines with brushes and slip rings are popular but hardly used in inflammable and explosive environments. This paper proposes a new brushless electrically excited synchronous motor with a hybrid rotor. It eliminates the use of brushes and slip rings so as to improve the reliability and cost-effectiveness of the traction drive. The proposed motor is characterized with two sets of stator windings with two different pole numbers to provide excitation and drive torque independently. This paper introduces the structure and operating principle of the machine, followed by the analysis of the air-gap magnetic field using the finite-element method. The influence of the excitation winding's pole number on the coupling capability is studied and the operating characteristics of the machine are simulated. These are further examined by the experimental tests on a 16 kW prototype motor. The machine is proved to have good static and dynamic performance, which meets the stringent requirements for traction applications.
Resumo:
Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^
Resumo:
A difficult transition to a new paradigm of Democratic Security and the subsequent process of military restructuring during the nineties led El Salvador, Honduras, Guatemala and Nicaragua to re-consider their old structures and functions of their armed forces and police agencies. This study compares the institutions in the four countries mentioned above to assess their current condition and response capacity in view of the contemporary security challenges in Central America. This report reveals that the original intention of limiting armies to defend and protect borders has been threatened by the increasing participation of armies in public security. While the strength of armies has been consolidated in terms of numbers, air and naval forces have failed to become strengthened or sufficiently developed to effectively combat organized crime and drug trafficking and are barely able to conduct air and sea operations. Honduras has been the only country that has maintained a proportional distribution of its armed forces. However, security has been in the hands of a Judicial Police, supervised by the Public Ministry. The Honduran Judicial Police has been limited to exercising preventive police duties, prohibited from carrying out criminal investigations. Nicaragua, meanwhile, possesses a successful police force, socially recognized for maintaining satisfactory levels of security surpassing the Guatemalan and El Salvadoran police, which have not achieved similar results despite of having set up a civilian police force separate from the military. El Salvador meanwhile, has excelled in promoting a Police Academy and career professional education, even while not having military attachés in other countries. Regarding budgetary issues, the four countries allocate almost twice the amount of funding on their security budgets in comparison to what is allocated to their defense budgets. However, spending in both areas is low when taking into account each country's GDP as well as their high crime rates. Regional security challenges must be accompanied by a professionalization of the regional armies focused on protecting and defending borders. Therefore, strong institutional frameworks to support the fight against crime and drug trafficking are required. It will require the strengthening of customs, greater control of illicit arms trafficking, investment in education initiatives, creating employment opportunities and facilitating significant improvements in the judicial system, as well as its accessibility to the average citizen.
Resumo:
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. ^ Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. ^ Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building's energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. ^ In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. ^ An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.^
Resumo:
Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.
Resumo:
Increased device density, switching speeds of integrated circuits and decrease in package size is placing new demands for high power thermal-management. The convectional method of forced air cooling with passive heat sink can handle heat fluxes up-to 3-5W/cm2; however current microprocessors are operating at levels of 100W/cm2, This demands the usage of novel thermal-management systems. In this work, water-cooling systems with active heat sink are embedded in the substrate. The research involved fabricating LTCC substrates of various configurations - an open-duct substrate, the second with thermal vias and the third with thermal vias and free-standing metal columns and metal foil. Thermal testing was performed experimentally and these results are compared with CFD results. An overall thermal resistance for the base substrate is demonstrated to be 3.4oC/W-cm2. Addition of thermal vias reduces the effective resistance of the system by 7times and further addition of free standing columns reduced it by 20times.
Resumo:
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Climate change is thought to be one of the most pressing environmental problems facing humanity. However, due in part to failures in political communication and how the issue has been historically defined in American politics, discussions of climate change remain gridlocked and polarized. In this dissertation, I explore how climate change has been historically constructed as a political issue, how conflicts between climate advocates and skeptics have been communicated, and what effects polarization has had on political communication, particularly on the communication of climate change to skeptical audiences. I use a variety of methodological tools to consider these questions, including evolutionary frame analysis, which uses textual data to show how issues are framed and constructed over time; Kullback-Leibler divergence content analysis, which allows for comparison of advocate and skeptical framing over time; and experimental framing methods to test how audiences react to and process different presentations of climate change. I identify six major portrayals of climate change from 1988 to 2012, but find that no single construction of the issue has dominated the public discourse defining the problem. In addition, the construction of climate change may be associated with changes in public political sentiment, such as greater pessimism about climate action when the electorate becomes more conservative. As the issue of climate change has become more polarized in American politics, one proposed causal pathway for the observed polarization is that advocate and skeptic framing of climate change focuses on different facets of the issue and ignores rival arguments, a practice known as “talking past.” However, I find no evidence of increased talking past in 25 years of popular newsmedia reporting on the issue, suggesting both that talking past has not driven public polarization or that polarization is occurring in venues outside of the mainstream public discourse, such as blogs. To examine how polarization affects political communication on climate change, I test the cognitive processing of a variety of messages and sources that promote action against climate change among Republican individuals. Rather than identifying frames that are powerful enough to overcome polarization, I find that Republicans exhibit telltale signs of motivated skepticism on the issue, that is, they reject framing that runs counter to their party line and political identity. This result suggests that polarization constrains political communication on polarized issues, overshadowing traditional message and source effects of framing and increasing the difficulty communicators experience in reaching skeptical audiences.