984 resultados para Agulhas Plateau
Resumo:
The accumulation of extraterrestrial 3He, a tracer for interplanetary dust particles (IDPs), in sediments from the Ontong Java Plateau (OJP; western equatorial Pacific Ocean) has been shown previously to exhibit a regular cyclicity during the late Pleistocene, with a period of ~100 ka. Those results have been interpreted to reflect periodic variability in the global accretion of IDPs that, in turn, has been linked to changes in the inclination of Earth's orbit with respect to the invariable plane of the solar system. Here we show that the accumulation in OJP sediments of authigenic 230Th, produced by radioactive decay of 234U in seawater, exhibits a 100-ka cyclicity similar in phase and amplitude to that evident in the 3He record. We interpret the similar patterns of 230Th and 3He accumulation to reflect a common origin within the ocean-climate system. Comparing spatial and temporal patterns of sediment accumulation against regional patterns of biological productivity and against the well-established pattern of CaCO3 dissolution in the deep Pacific Ocean leads to the further conclusion that a common 100-ka cycle in accumulation of biogenic, authigenic and extraterrestrial constituents in OJP sediments reflects the influence of climate-related changes in sediment focusing, rather than changes in the rate of production or supply of sedimentary constituents.
Resumo:
Fluid inclusions of protogenous halite, which were collected from two boreholes in the Charhan Salt Lake in the north part of the Qinghai-Xizang Plateau, werea nalyzed for their hydrogen and oxygen isotopes and for their Na, Mg etc. ions.On these grounds, the evolution of lake environment in this region during the last 50 000 years are discussed in this paper. The emphasis is to discuss the time range of extremely arid and cold climate at the last Glacial stage and the geological event of playa associated with such a climate.The guanidine hydrochloride method was used for measurement of hydrogen and oxygen stable isotopes. The measurement of Na, Mg etc. ions were achieved by determination of crystallization temperature of hydrohalite under microscope and then by calculation of chemical compositions of inclusion fluid using a thermodynamic model.The results obtained show that protogenous halite in the Charhan Lake area was formed in three different environment conditions: (1) In fluid inclusions of halite formed in the early period (50 000-30 000 a B. P. ), dD averages -14.9 per mil, d(18)O averages 8.37 per mil, and Mg(2+)ranges from 0.42 to 1.59 mol/L. Their plotting points fall on the right top part of the evaporation line of the present Charhan Lake area, indicating that the Lake water at that time had a higher concentration of brine, and the climate was hot and dry. (2) In fluid inclusions of halite formed in the middle period (30 000-15 000 a B. P.), SD average -66.0 per mil, d(18)O averages 1.00 pr mil, and Mg(2+) 1 mol/L. Their plotting points fall on the left low part of the evaporation line, indicating that the lake water at that time had a concentration of brine lower than that in the early period, and the environment was cold and dry. (3) In fluid inclusions of halite formed in the late period (15 000-present), dD averages 30.8 per mil, d(18)O averages 5.85 per mil, and Mg(2+) M 1 mol/L. Their plotting fall on the evaporation line, indicating that the climate environment at that time was warm and dry, almost the same as the present.The temperature variation of the last 50 000 years in the Charhan Lake area was calculated using the conversion equation proposed by Lorious et al. The time range of the Great ice age of the Last Glacial Stage is about 21 000-15 000 a B.P., which basically coincides with the time of a worldwide low sea level. The temperature in that period was below 0°C and 6-7°C lower than now. Because of lower temperatures, water supply to the lake area decreased rapidly and the concentration of lake water increased sharply. Therefore the Mg(2+) concentration in inclusion fluid reaches or closes to 2mol/L and the Mg/Na ratio varies within a very wide range. These show that the Charhan Lake at that time entered its playa stage. The Charhan Salt Lake is a typical one in the north part of the Qinghai-Xizang Plateau. It can be supposed that the extremely arid and cold climate of the Great Ice Age made most lakes in the north part of the Qinghai-Xizang Plateau enter their playa stage. This event is of importance for formation of salt resources.
Resumo:
Cores from Leg 122, Sites 762 and 763, were sampled at intervals of one sample per 1.5-m section in the Lower Cretaceous sequences. More than 400 samples were studied, most of which contained dinoflagellate cysts, spores, pollen, and various types of palynoclasts. From the entire palynomorph assemblage mainly dinoflagellate cysts were studied to give a stratigraphic outline for the Lower Cretaceous. Stratigraphic units were interpreted in terms of zones in use for the Jurassic and Cretaceous of Australia. At both sites a condensed Valanginian to Aptian sequence and an expanded middle to late Berriasian sequence containing a rich microplankton assemblage were recovered. Sites 762 and 763 can be correlated with each other and with the wells Eendracht-1 and Vinck-1.
Resumo:
A total of 35 calcareous nannofossil datums were found in the Neogene sediments recovered at five sites (Sites 803-807) on the Ontong Java Plateau in the equatorial Pacific during Ocean Drilling Program Leg 130. Among them, 12 datums in the Pleistocene-upper Pliocene sequences were correlated with magnetostratigraphy. Pliocene and Miocene calcareous nannofossil assemblages in 289 samples obtained from Holes 804C, 805B, 805C, and 806B were studied. Reticulofenestra coccolith size distribution patterns in these Pliocene-Miocene sediments were also revealed through the present investigation.
Resumo:
Neogene biostratigraphic and magnetostratigraphic data are compiled from Holes 747A, 748B, and 751A drilled on the Southern Kerguelen Plateau during Ocean Drilling Program Leg 120. Neogene sections have excellent to good magnetostratigraphic signatures in many intervals. This, in addition to minimal coring gaps and the occurrence of mixed assemblages of both calcareous and siliceous microfossil assemblages, makes these valuable biostratigraphic reference sections for intra- and extraregional correlations. This paper combines the sequence of biostratigraphic events reported from diatom, radiolarian, planktonic foraminifer, calcareous nannofossil, and silicoflagellate studies of Leg 120 sediments. It correlates microfossil datums with the geomagnetic polarity time scale to test existing age estimates and to refine biostratigraphic age controls for the southern high latitudes. Significant biostratigraphic datums are presented in a series of age-depth plots. Numerous hiatuses are clearly identified through this approach, and the positions of lesser disconformities are suggested. Most Neogene intervals are represented in at least one site, although "regional" unconformities occur in the upper Pliocene, uppermost Miocene/lowermost Pliocene, middle upper Miocene, middle middle Miocene, and at the lower/middle Miocene boundaries. The longest hiatus spanned 6 m.y., with most other hiatuses representing 1 m.y. or less. This paper compiles Leg 120 biostratigraphic and magnetostratigraphic data for use in future syntheses of southern high latitude biostratigraphy and presents an age model for Leg 120 Neogene sediments.
Resumo:
The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with 13CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C/ha), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C/m**2/ in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.
Resumo:
Concordant plateau and isochron ages were calculated from 40Ar/39Ar incremental heating experiments on volcanic rocks recovered by drilling at four Leg 115 sites and two industry wells along the volcanic lineament connecting Reunion Island to the Deccan flood basalts, western Indian Ocean. The new ages provide unequivocal evidence that volcanic activity migrated southward along this sequence of linear ridges. The geometry and age distribution of volcanism are most compatible with origin above a stationary hotspot centered beneath Reunion. The hotspot became active with rapid eruption of the Deccan flood basalts, western India, and subsequent volcanic products record the northward motion of the Indian and African plates over the hotspot through Tertiary time. The radiometric ages are in general accord with basal biostratigraphic age estimates, although some adjustments in current magnetobiostratigraphic time scales may be required.
Resumo:
Diverse, warm-water planktonic foraminiferal faunas prevailed on the Wombat and Exmouth plateaus during the Neogene, in spite of the northward drift of Australia across 10° to 15° latitude since the early Miocene. Invasions of cool-water species occurred during periods of global cooling in the late middle Miocene, late Miocene, and Pleistocene, and reflect periods of increased northward transport of cool surface water, probably via the West Australian Current. The sedimentary record of the Neogene on Wombat and Exmouth Plateau is interrupted by two hiatuses (lower Miocene, Zone N5, and upper middle to upper Miocene, Zones N15-N17), and one redeposited section of upper Miocene to uppermost Pliocene sediments. Mechanical erosion or nondeposition by increased deep-water flow or tilting and uplift of Wombat and Exmouth plateaus, resulting in sediment shedding, are the most likely explanations for these Miocene hiatuses, but which of these processes were actually operative on the Wombat and Exmouth plateaus is uncertain. The redeposited section of upper Miocene to uppermost Pliocene sediments in Hole 761B, however, certainly reflects a latest Pliocene period of uplift and tilting of the Wombat Plateau. An important finding was the occurrence of Zone N15-correlative sediments in Hole 762B without any representative of Neogloboquadrina. Similar findings in Java and Jamaica indicate that the earliest spreading of Neogloboquadrina acostaensis in the tropical region resulted from migration. The evolution of this species, therefore, must have taken place in higher latitudes. I suggest that Neogloboquadrina acostaensis evolved from Neogloboquadrina atlantica in the North Atlantic within Zone NN9, but how and where in the region this speciation took place is still uncertain
Resumo:
The Neogene sediments from DSDP site 341 on the Voring Plateau, Norwegian Sea, contain a thin glauconitic pellet-bearing subunit, which separates underlying pelagic clays from overlying glacial-marine sediments. Oxygen isotope measurements of benthic foraminifera show a delta18O shift of + 1? during deposition of this subunit, probably a combined effect of a drop in bottom water temperature and a rise in seawater delta18O. The chronology of this sedimentological and O isotope transition is, however, poorly constrained by fossil evidence. Rb-Sr dating of glauconitic pellets indicates that the lower part of the glauconitic subunit was deposited 11.6 +/- 0.2 Ma ago. Further geochronological evidence, derived from the Sr and C isotopic compositions of foraminifera compared with known seawater-time variations, indicates that the lower pelagic clays are early to middle Miocene, deposited at a mean rate of ~15 m/Ma. The glauconitic subunit contains part of the middle Miocene and probably all of the late Miocene in a condensed sequence with a very low mean depositional rate (~0.2 m/Ma). The overlying glacial marine sediments are probably Pliocene, with a high mean rate of deposition, ~45 m/Ma. This is the first application of C, O and Sr isotopic stratigraphy combined with Rb-Sr dating of glauconitic minerals, and it illustrates the applications of this integrated approach in geochronology.
Resumo:
The Agulhas Leakage represents a significant portion of the warm, surface return flow of the global overturning circulation and thus may be an important feedback in the ocean climate system. Models indicate that reduced leakage could be caused by a stronger Agulhas Current and/or a more upstream (eastward) Agulhas Retroflection, while a weaker Agulhas Current would result in a more westward retroflection and increased leakage. However, data for the Last Glacial Maximum support both a weaker Agulhas Current and less leakage, implying a possible displacement of the retroflection. We present new 87Sr/86Sr results for modern sediments within this region, confirming that the modern pathway of the Agulhas Current, Retroflection, and Leakage can be traced by terrigenous sediment provenance using Sr isotopes. New 87Sr/86Sr data from sediments deposited during the Last Glacial Maximum suggest that the glacial Agulhas Current and Retroflection followed nearly their modern trajectory. The provenance data appear to rule out both a stronger Agulhas Current and a more upstream Agulhas Retroflection. We conclude that the reduced glacial leakage was caused by the weakened Agulhas Current, with no significant change in the retroflection position. This is inconsistent with the model predictions and thus emphasizes the need for further work in this region.