906 resultados para Adaptive object model
Resumo:
In this study it is shown that the nontrivial hyperbolic fixed point of a nonlinear dynamical system, which is formulated by means of the adaptive expectations, corresponds to the unstable equilibrium of Harrod. We prove that this nonlinear dynamical (in the sense of Harrod) model is structurally stable under suitable economic conditions. In the case of structural stability, small changes of the functions (C1-perturbations of the vector field) describing the expected and the true time variation of the capital coefficients do not influence the qualitative properties of the endogenous variables, that is, although the trajectories may slightly change, their structure is the same as that of the unperturbed one, and therefore these models are suitable for long-time predictions. In this situation the critique of Lucas or Engel is not valid. There is no topological conjugacy between the perturbed and unperturbed models; the change of the growth rate between two levels may require different times for the perturbed and unperturbed models.
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
Optimization of adaptive traffic signal timing is one of the most complex problems in traffic control systems. This dissertation presents a new method that applies the parallel genetic algorithm (PGA) to optimize adaptive traffic signal control in the presence of transit signal priority (TSP). The method can optimize the phase plan, cycle length, and green splits at isolated intersections with consideration for the performance of both the transit and the general vehicles. Unlike the simple genetic algorithm (GA), PGA can provide better and faster solutions needed for real-time optimization of adaptive traffic signal control. ^ An important component in the proposed method involves the development of a microscopic delay estimation model that was designed specifically to optimize adaptive traffic signal with TSP. Macroscopic delay models such as the Highway Capacity Manual (HCM) delay model are unable to accurately consider the effect of phase combination and phase sequence in delay calculations. In addition, because the number of phases and the phase sequence of adaptive traffic signal may vary from cycle to cycle, the phase splits cannot be optimized when the phase sequence is also a decision variable. A "flex-phase" concept was introduced in the proposed microscopic delay estimation model to overcome these limitations. ^ The performance of PGA was first evaluated against the simple GA. The results show that PGA achieved both faster convergence and lower delay for both under- or over-saturated traffic conditions. A VISSIM simulation testbed was then developed to evaluate the performance of the proposed PGA-based adaptive traffic signal control with TSP. The simulation results show that the PGA-based optimizer for adaptive TSP outperformed the fully actuated NEMA control in all test cases. The results also show that the PGA-based optimizer was able to produce TSP timing plans that benefit the transit vehicles while minimizing the impact of TSP on the general vehicles. The VISSIM testbed developed in this research provides a powerful tool to design and evaluate different TSP strategies under both actuated and adaptive signal control. ^
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^
Resumo:
Automated information system design and implementation is one of the fastest changing aspects of the hospitality industry. During the past several years nothing has increased the professionalism or improved the productivity within the industry more than the application of computer technology. Intuitive software applications, deemed the first step toward making computers more people-literate, object-oriented programming, intended to more accurately model reality, and wireless communications are expected to play a significant role in future technological advancement.
Resumo:
Large read-only or read-write transactions with a large read set and a small write set constitute an important class of transactions used in such applications as data mining, data warehousing, statistical applications, and report generators. Such transactions are best supported with optimistic concurrency, because locking of large amounts of data for extended periods of time is not an acceptable solution. The abort rate in regular optimistic concurrency algorithms increases exponentially with the size of the transaction. The algorithm proposed in this dissertation solves this problem by using a new transaction scheduling technique that allows a large transaction to commit safely with significantly greater probability that can exceed several orders of magnitude versus regular optimistic concurrency algorithms. A performance simulation study and a formal proof of serializability and external consistency of the proposed algorithm are also presented.^ This dissertation also proposes a new query optimization technique (lazy queries). Lazy Queries is an adaptive query execution scheme which optimizes itself as the query runs. Lazy queries can be used to find an intersection of sub-queries in a very efficient way, which does not require full execution of large sub-queries nor does it require any statistical knowledge about the data.^ An efficient optimistic concurrency control algorithm used in a massively parallel B-tree with variable-length keys is introduced. B-trees with variable-length keys can be effectively used in a variety of database types. In particular, we show how such a B-tree was used in our implementation of a semantic object-oriented DBMS. The concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict detection. This algorithm ensures serializability and external consistency by using logical clocks and backward validation of transactional queries. A formal proof of correctness of the proposed algorithm is also presented. ^
Resumo:
Over the past five years, XML has been embraced by both the research and industrial community due to its promising prospects as a new data representation and exchange format on the Internet. The widespread popularity of XML creates an increasing need to store XML data in persistent storage systems and to enable sophisticated XML queries over the data. The currently available approaches to addressing the XML storage and retrieval issue have the limitations of either being not mature enough (e.g. native approaches) or causing inflexibility, a lot of fragmentation and excessive join operations (e.g. non-native approaches such as the relational database approach). ^ In this dissertation, I studied the issue of storing and retrieving XML data using the Semantic Binary Object-Oriented Database System (Sem-ODB) to leverage the advanced Sem-ODB technology with the emerging XML data model. First, a meta-schema based approach was implemented to address the data model mismatch issue that is inherent in the non-native approaches. The meta-schema based approach captures the meta-data of both Document Type Definitions (DTDs) and Sem-ODB Semantic Schemas, thus enables a dynamic and flexible mapping scheme. Second, a formal framework was presented to ensure precise and concise mappings. In this framework, both schemas and the conversions between them are formally defined and described. Third, after major features of an XML query language, XQuery, were analyzed, a high-level XQuery to Semantic SQL (Sem-SQL) query translation scheme was described. This translation scheme takes advantage of the navigation-oriented query paradigm of the Sem-SQL, thus avoids the excessive join problem of relational approaches. Finally, the modeling capability of the Semantic Binary Object-Oriented Data Model (Sem-ODM) was explored from the perspective of conceptually modeling an XML Schema using a Semantic Schema. ^ It was revealed that the advanced features of the Sem-ODB, such as multi-valued attributes, surrogates, the navigation-oriented query paradigm, among others, are indeed beneficial in coping with the XML storage and retrieval issue using a non-XML approach. Furthermore, extensions to the Sem-ODB to make it work more effectively with XML data were also proposed. ^
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
The relationship between noun incorporation (NI) and the agreement alternations that occur in such contexts (NI Transitivity Alternations) remains inadequately understood. Three interpretations of these alternations (Baker, Aranovich & Golluscio 2005; Mithun 1984; Rosen 1989) are shown to be undermined by foundational or mechanical issues. I propose a syntactic model, adopting Branigan's (2011) interpretation of NI as the result of “provocative” feature valuation, which triggers generation of a copy of the object that subsequently merges inside the verb. Provocation triggers a reflexive Refine operation that deletes duplicate features from chains, making them interpretable for Transfer. NI Transitivity Alternations result from variant deletion preferences exhibited during Refine. I argue that the NI contexts discussed (Generic NI, Partial NI and Double Object NI) result from different restrictions on phonetic and semantic identity in chain formation. This provides us with a consistent definition of NI Transitivity Alternations across contexts, as well as a new typology that distinguishes NI contexts, rather than incorporating languages.
Resumo:
Bayesian adaptive methods have been extensively used in psychophysics to estimate the point at which performance on a task attains arbitrary percentage levels, although the statistical properties of these estimators have never been assessed. We used simulation techniques to determine the small-sample properties of Bayesian estimators of arbitrary performance points, specifically addressing the issues of bias and precision as a function of the target percentage level. The study covered three major types of psychophysical task (yes-no detection, 2AFC discrimination and 2AFC detection) and explored the entire range of target performance levels allowed for by each task. Other factors included in the study were the form and parameters of the actual psychometric function Psi, the form and parameters of the model function M assumed in the Bayesian method, and the location of Psi within the parameter space. Our results indicate that Bayesian adaptive methods render unbiased estimators of any arbitrary point on psi only when M=Psi, and otherwise they yield bias whose magnitude can be considerable as the target level moves away from the midpoint of the range of Psi. The standard error of the estimator also increases as the target level approaches extreme values whether or not M=Psi. Contrary to widespread belief, neither the performance level at which bias is null nor that at which standard error is minimal can be predicted by the sweat factor. A closed-form expression nevertheless gives a reasonable fit to data describing the dependence of standard error on number of trials and target level, which allows determination of the number of trials that must be administered to obtain estimates with prescribed precision.
Resumo:
Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter values larger than their counterparts in the psychometric function, (c) stimulus placement at the prior mean, and (d) estimates defined as the posterior mean. Unbiasedness arises in only 10 trials, and 20 trials ensure constant standard errors. The standard error of the estimates equals 0.617 times the inverse of the square root of the number of trials. Other variants yielded bias and larger standard errors.
Resumo:
Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 mu m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_H) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.
Resumo:
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.
Resumo:
Due to huge popularity of portable terminals based on Wireless LANs and increasing demand for multimedia services from these terminals, the earlier structures and protocols are insufficient to cover the requirements of emerging networks and communications. Most research in this field is tailored to find more efficient ways to optimize the quality of wireless LAN regarding the requirements of multimedia services. Our work is to investigate the effects of modulation modes at the physical layer, retry limits at the MAC layer and packet sizes at the application layer over the quality of media packet transmission. Interrelation among these parameters to extract a cross-layer idea will be discussed as well. We will show how these parameters from different layers jointly contribute to the performance of service delivery by the network. The results obtained could form a basis to suggest independent optimization in each layer (an adaptive approach) or optimization of a set of parameters from different layers (a cross-layer approach). Our simulation model is implemented in the NS-2 simulator. Throughput and delay (latency) of packet transmission are the quantities of our assessments. © 2010 IEEE.