829 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bayesian formulated neural networks are implemented using hybrid Monte Carlo method for probabilistic fault identification in cylindrical shells. Each of the 20 nominally identical cylindrical shells is divided into three substructures. Holes of (12±2) mm in diameter are introduced in each of the substructures and vibration data are measured. Modal properties and the Coordinate Modal Assurance Criterion (COMAC) are utilized to train the two modal-property-neural-networks. These COMAC are calculated by taking the natural-frequency-vector to be an additional mode. Modal energies are calculated by determining the integrals of the real and imaginary components of the frequency response functions over bandwidths of 12% of the natural frequencies. The modal energies and the Coordinate Modal Energy Assurance Criterion (COMEAC) are used to train the two frequency-response-function-neural-networks. The averages of the two sets of trained-networks (COMAC and COMEAC as well as modal properties and modal energies) form two committees of networks. The COMEAC and the COMAC are found to be better identification data than using modal properties and modal energies directly. The committee approach is observed to give lower standard deviations than the individual methods. The main advantage of the Bayesian formulation is that it gives identities of damage and their respective confidence intervals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two adaptive numerical modelling techniques have been applied to prediction of fatigue thresholds in Ni-base superalloys. A Bayesian neural network and a neurofuzzy network have been compared, both of which have the ability to automatically adjust the network's complexity to the current dataset. In both cases, despite inevitable data restrictions, threshold values have been modelled with some degree of success. However, it is argued in this paper that the neurofuzzy modelling approach offers real benefits over the use of a classical neural network as the mathematical complexity of the relationships can be restricted to allow for the paucity of data, and the linguistic fuzzy rules produced allow assessment of the model without extensive interrogation and examination using a hypothetical dataset. The additive neurofuzzy network structure means that redundant inputs can be excluded from the model and simple sub-networks produced which represent global output trends. Both of these aspects are important for final verification and validation of the information extracted from the numerical data. In some situations neurofuzzy networks may require less data to produce a stable solution, and may be easier to verify in the light of existing physical understanding because of the production of transparent linguistic rules. © 1999 Elsevier Science S.A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents ongoing work on data collection and collation from a large number of laboratory cement-stabilization projects worldwide. The aim is to employ Artificial Neural Networks (ANN) to establish relationships between variables, which define the properties of cement-stabilized soils, and the two parameters determined by the Unconfined Compression Test, the Unconfined Compressive Strength (UCS), and stiffness, using E50 calculated from UCS results. Bayesian predictive neural network models are developed to predict the UCS values of cement-stabilized inorganic clays/silts, as well as sands as a function of selected soil mix variables, such as grain size distribution, water content, cement content and curing time. A model which can predict the stiffness values of cement-stabilized clays/silts is also developed and compared to the UCS model. The UCS model results emulate known trends better and provide more accurate estimates than the results from the E50 stiffness model. © 2013 American Society of Civil Engineers.