953 resultados para Accelerated environmental aging. Central hole. Fracture mechanics. Mechanical properties. Residual properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring signi?cant bene?ts both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure
and properties.

A biaxial test rig was used to carry out the testing which imposed conditions on the sheet that are representative of those applied in injection blow molding and thermoforming. Results show that the presence of clay increases the yield stress relative to the un?lled material at typical processing temperatures and that the sensitivity of the yield stress to temperature is greater for the ?lled material. The stretching process is found to have a signi?cant effect on the delamination and alignment of clay particles (as observed by TEM) and on yield stress and elongation at break of the stretched sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly (methyl methacrylate) (PMMA) bone cement—multi walled carbon nanotube (MWCNT) nanocomposites with weight loadings ranging from 0.1 to 1.0 wt% were prepared. The MWCNTs investigated were unfunctionalised, carboxyl and amine functionalised MWCNTs. Mechanical properties of the resultant nanocomposite cements were characterised as per international standards for acrylic resin cements. These mechanical properties were influenced by the type and wt% loading of MWCNT used. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect and hindering crack propagation. MWCNTs agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the weight fraction and functionality of MWCNTs incorporated into the cement.