834 resultados para AVIAN
Resumo:
The interest in animal welfare and welfare-friendly food products has been increasing in Europe over the last 10 years. The media, highlighting traditional farming methods and food scares such as those related to salmonella, bovine spongiform encephalopathy/variant Creutzfeldt-Jakob disease (BSE) and avian influenza, have brought the methods of animal farming to public attention. Concerns about farm animal welfare are reflected in the increase in the number of vegetarians and vegans and an increase in consumers wishing to purchase food which is more animal welfare-friendly. This paper considers consumers’ attitudes to animal welfare and to marketing practices, such as product labelling, welfare grading systems and food assurance marks using comparative data collected in a survey of around 1500 consumers in each of Great Britain, Italy and Sweden as part of the EU-funded Welfare Quality research project. The findings suggest a need for the provision of improved consumer information on the welfare provenance of food using appropriate product labelling and other methods.
Resumo:
Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.
Resumo:
Background noise should in theory hinder detection of auditory cues associated with approaching danger. We tested whether foraging chaffinches Fringilla coelebs responded to background noise by increasing vigilance, and examined whether this was explained by predation risk compensation or by a novel stimulus hypothesis. The former predicts that only inter-scan interval should be modified in the presence of background noise, not vigilance levels generally. This is because noise hampers auditory cue detection and increases perceived predation risk primarily when in the head-down position, and also because previous tests have shown that only interscan interval is correlated with predator detection ability in this system. Chaffinches only modified interscan interval supporting this hypothesis. At the same time they made significantly fewer pecks when feeding during the background noise treatment and so the increased vigilance led to a reduction in intake rate, suggesting that compensating for the increased predation risk could indirectly lead to a fitness cost. Finally, the novel stimulus hypothesis predicts that chaffinches should habituate to the noise, which did not occur within a trial or over 5 subsequent trials. We conclude that auditory cues may be an important component of the trade-off between vigilance and feeding, and discuss possible implications for anti-predation theory and ecological processes
Resumo:
Capsule Avian predators are principally responsible. Aims To document the fate of Spotted Flycatcher nests and to identify the species responsible for nest predation. Methods During 2005-06, purpose-built, remote, digital nest-cameras were deployed at 65 out of 141 Spotted Flycatcher nests monitored in two study areas, one in south Devon and the second on the border of Bedfordshire and Cambridgeshire. Results Of the 141 nests monitored, 90 were successful (non-camera nests, 49 out of 76 successful, camera nests, 41 out of 65). Fate was determined for 63 of the 65 nests monitored by camera, with 20 predation events documented, all of which occurred during daylight hours. Avian predators carried out 17 of the 20 predations, with the principal nest predator identified as Eurasian Jay Garrulus glandarius. The only mammal recorded predating nests was the Domestic Cat Felis catus, the study therefore providing no evidence that Grey Squirrels Sciurus carolinensis are an important predator of Spotted Flycatcher nests. There was no evidence of differences in nest survival rates at nests with and without cameras. Nest remains following predation events gave little clue as to the identity of the predator species responsible. Conclusions Nest-cameras can be useful tools in the identification of nest predators, and may be deployed with no subsequent effect on nest survival. The majority of predation of Spotted Flycatcher nests in this study was by avian predators, principally the Jay. There was little evidence of predation by mammalian predators. Identification of specific nest predators enhances studies of breeding productivity and predation risk.
Resumo:
The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.
Resumo:
The interactions among the multiple factors regulating predator-prey relationships make predation a more complex process than previously thought. The degree to which substandard individuals are captured disproportionately seems to be better a function of the difficulty of prey capture than of the hunting techniques (coursing vs. ambushing predators). That is, when the capture and killing of a prey species is easy, substandard individuals will be predated in proportion to their occurrence in the prey population. In the present study, we made use of eagle owls Bubo bubo and their main prey, the rabbit Oryctolagus cuniculus: (a) the brightness of the white tails of rabbits seems to be correlated with the physical condition of individuals, (b) by using the tails of predated rabbits as an index of individual condition, we found that eagle owls seem to prefer substandard individuals (characterized by duller tails), and (c) by using information from continuous radiotracking of 14 individuals, we suggest that the difficulty of rabbit capture could be low. Although the relative benefits of preying on substandard individuals should considerably decrease when a predator is attacking an easy prey, we hypothesise that the eagle owl preference for substandard individuals could be due to the easy detection of poor individuals by a visual cue, the brightness of the rabbit tail. Several elements allow us to believe that this form of visual communication between a prey and one of its main predators could be more widespread than previously thought. In fact: (a) visual signalling plays a relevant role in intraspecific communication in eagle owls and, consequently, visual signals could also play a role in interspecific interactions, and (b) empirical studies showed that signals may inform the predator that it has been perceived, or that the prey is in a sufficiently healthy state to elude the predator.
Resumo:
Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.
Resumo:
The lymph heart is a sac-like structure on either side of avian tail. In some adult birds, it empties the lymph from the copulatory organ; however, during embryonic development, it is thought to circulate extra-embryonic lymph. Very little is known about the origin, innervation and the cellular changes it undergoes during development. Using immunohistochemistry and gene expression profiling we show that the musculature of the lymph heart is initially composed solely of striated skeletal muscle but later develops an additional layer composed of smooth myofibroblasts. Chick-quail fate-mapping demonstrates that the lymph heart originates from the hypaxial compartments of somites 34-41. The embryonic lymph heart is transiently innervated by somatic motoneurons with no autonomic input. In comparison to body muscles, the lymph heart has different sensitivity to neuromuscular junction blockers (sensitive only to decamethonium). Furthermore, its abundant bungarotoxin-positive acetylcholinesterase receptors are unique as they completely lack specific acetylcholinesterase activity. Several lines of evidence suggest that the lymph heart may possess an intrinsic pacing mechanism. Finally, we assessed the function of the lymph heart during embryogenesis and demonstrate that it is responsible for preventing embryonic oedema in birds, a role previously thought to be played by body skeletal muscle contractions.
Resumo:
Background: Although H5N1 avian influenza viruses pose the most obvious imminent pandemic threat, there have been several recent zoonotic incidents involving transmission of H7 viruses to humans. Vaccines are the primary public health defense against pandemics, but reliance on embryonated chickens eggs to propagate vaccine and logistic problems posed by the use of new technology may slow our ability to respond rapidly in a pandemic situation. Objectives: We sought to generate an H7 candidate vaccine virus suitable for administration to humans whose generation and amplification avoided the use of eggs. Methods: We generated a suitable H7 vaccine virus by reverse genetics. This virus, known as RD3, comprises the internal genes of A/Puerto Rico/8/34 with surface antigens of the highly pathogenic avian strain A/Chicken/Italy/13474/99 (H7N1). The multi-basic amino acid site in the HA gene, associated with high pathogenicity in chickens, was removed. Results: The HA modification did not alter the antigenicity of the virus and the resultant single basic motif was stably retained following several passages in Vero and PER. C6 cells. RD3 was attenuated for growth in embryonated eggs, chickens, and ferrets. RD3 induced an antibody response in infected animals reactive against both the homologous virus and other H7 influenza viruses associated with recent infection by H7 viruses in humans. Conclusions: This is the first report of a candidate H7 vaccine virus for use in humans generated by reverse genetics and propagated entirely in mammalian tissue culture. The vaccine has potential use against a wide range of H7 strains.
Resumo:
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G(2)/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G(2) regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G(2)/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the Go phase or asynchronously replicating cells. Our data suggested that IBV induces a G(2)/M phase arrest in infected cells to promote favorable conditions for viral replication.
Resumo:
The binding specificities of a panel of avian influenza virus subtype H5 hemagglutinin (RA) proteins bearing mutations at key residues in the receptor binding site were investigated. The results demonstrate that two simultaneous mutations in the receptor binding site resulted in H5 RA binding in a pattern similar to that shown by human viruses. Coexpression of the ion channel protein, M2, from most avian and human strains tested protected H5 RA conformation during trafficking, indicating that no genetic barrier to the reassortment of the H5 surface antigen gene with internal genes of human viruses existed at this level.
Resumo:
Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.
Resumo:
As an immunogen of the coronavirus, the nucleoprotein (N) is a potential antigen for the serological monitoring of infectious bronchitis virus (IBV). In this report, recombinant N protein from the Beaudette strain of IBV was produced and purified from Escherichia coli as well as Sf9 ( insect) cells, and used for the coating of enzyme-linked immunosorbent assay ( ELISA) plates. The N protein produced in Sf9 cells was phosphorylated whereas N protein from E. coli was not. Our data indicated that N protein purified from E. coli was more sensitive to anti-IBV serum than the protein from Sf9 cells. The recombinant N protein did not react with the antisera to other avian pathogens, implying that it was specific in the recognition of IBV antibodies. In addition, the data from the detection of field samples and IBV strains indicated that using the recombinant protein as coating antigen could achieve an equivalent performance to an ELISA kit based on infected material extracts as a source of antigen(s). ELISAs based on recombinant proteins are safe ( no live virus), clean ( only virus antigens are present), specific ( single proteins can be used) and rapid ( to respond to new viral strains and strains that cannot necessarily be easily cultured).
Resumo:
To study the potential involvement of inhibin A (inhA), inhibin B (inhB), activin A (actA) and follistatin (FS) in the recruitment of follicles into the preovulatory hierarchy, growing follicles (ranging from 1 mm to the largest designated F1) and the three most recent postovulatory follicles (POFs) were recovered from laying hens (n=11). With the exception of <4 mm follicles and POFs, follicle walls were dissected into separate granulosa (G) and theca (T) layers before extraction. Contents of inhA, inhB, actA and FS in tissue extracts were assayed using specific two-site ELISAs and results are expressed per mg DNA. InhB content of both G and T followed a similar developmental pattern, although the content was >4-fold higher in G than in T at all stages. InhB content was very low in follicles <4 nun but increased - 50-fold (P<0.0001) to peak in 7-9 mm follicles, before falling steadily as follicles entered and moved up the follicular hierarchy (40-fold; 8 mm vs F2). In stark contrast, inhA remained very low in prehierarchical follicles (&LE; 9 mm) but then increased progressively as follicles moved up the preovulatory hierarchy to peak in F1 (&SIM; 100-fold increase; P<0.0001); In F1 >97% of inhA was confined to the G layer whereas in 5-9 mm follicles inhA was only. detected in the T layer. Both inhA and inhB contents of POFs were significantly reduced compared with F1. Follicular actA was mainly confined to the T layer although detectable levels were present in G from 9 nun; actA was low between 1 and 9 mm but increased sharply as follicles entered the preovulatory hierarchy (&SIM;6-fold higher in F4; P<0.0001); levels then fell &SIM;2-fold as the follicle progressed to F1. Like actA, FS predominated in the T although significant amounts were also present in the G of prehierarchical follicles (4-9 mm), in contrast to actA, which was absent from the G. The FS content of T rose &SIM;3-fold from 6 mm to a plateau which was sustained until F1. In contrast, the FS content of G was greatest in prehierarchical follicles and fell &SIM;4-fold in F4-F1 follicles. ActA and FS contents of POFs were reduced compared with F1. In vitro studies on follicle wall explants confirmed the striking divergence in the secretion of inhA and inhB during follicle development. These findings of marked stage-dependent differences in the expression of inhA, inhB, actA and FS proteins imply a significant functional role for these peptides in the recruitment and ordered progression of follicles within the avian ovary.