956 resultados para ALKANEBISPHOSPHONATE THIN-FILM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, electronic, and optical properties of amorphous and transparent zinc tin oxide films deposited on glass substrates by pulsed laser deposition (PLD) were examined for two chemical compositions of Zn:Sn=1:1 and 2:1 as a function of oxygen partial pressure PO2 used for the film deposition and annealing temperature. Different from a previous report on sputter-deposited films Chiang et al., Appl. Phys. Lett. 86, 013503 2005 , the PLD-deposited films crystallized at a lower temperature 450 °C to give crystalline ZnO and SnO2 phases. The optical band gaps Tauc gaps were 2.80−2.85 eV and almost independent of oxygen PO2 , which are smaller than those of the corresponding crystals 3.35−3.89 eV . Films deposited at low PO2 showed significant subgap absorptions, which were reduced by postthermal annealing. Hall mobility showed steep increases when carrier concentration exceeded threshold values and the threshold value depended on the film chemical composition. The films deposited at low PO2 2 Pa had low carrier concentrations. It is thought that the low PO2 produced high-density oxygen deficiencies and generated electrons, but these electrons were trapped in localized states, which would be observed as the subgap absorptions. Similar effects were observed for 600 °C crystallized films and their resistivities were increased by formation of subgap states due to the reducing high-temperature condition. High carrier concentrations and large mobilities were obtained in an intermediate PO2 region for the as-deposited films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic glass alloy Metglas 2826 MB based amorphous magnetic thin films were fabricated by the thermal evaporation technique. Transmission electron micrographs and electron diffraction pattern showed the amorphous nature of the films. Composition of the films was analyzed employing x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy techniques. The film was integrated to a long period fibre grating. It was observed that the resonance wavelength of the fibre grating decreased with an increase in the magnetic field. Change in the resonance wavelength was minimal at higher magnetic fields. Field dependent magnetostriction values revealed the potential application of these films in magnetostrictive sensor devices

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis summarizes the results on the growth and characterisation of thin films of HA grown on TiAl6V4 (Ti) implant material at a lower substrate temperature by a combination of Pulsed laser deposition and a hydrothermal treatment to get sufficiently strong crystalline films suitable for orthopaedic applications. The comparison of the properties of the coated substrate has been made with other surface modification techniques like anodization and chemical etching. The in-vitro study has been conducted on the surface modified implants to assess its cell viability. A molecular level study has been conducted to analyze the adhesion mechanism of protein adhesion molecules on to HA coated implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AC thin film electroluminescent devices of MIS and MISIM have been fabricated with a novel dielectric layer of Eu2O3 as an insulator. The threshold voltage for light emission is found to depend strongly on the frequency of excitation source in these devices. These devices are fabricated with an active layer of ZnS:Mn and a novel dielectric layer of Eu2O3 as an insulator. The observed frequency dependence of brightness-voltage characteristics has been explained on the basis of the loss characteristic of the insulator layer. Changes in the threshold voltage and brightness with variation in emitting or insulating film thickness have been investigated in metal-insulator-semiconductor (MIS) structures. It has been found that the decrease in brightness occurring with decreasing ZnS layer thickness can be compensated by an increase in brightness obtained by reducing the insulator thickness. The optimal condition for low threshold voltage and higher stability has been shown to occur when the active layer to insulator thickness ratio lies between one and two.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solid-state laser based on a dye-doped deoxyribonucleic acid (DNA) matrix is described. A thin solid film of DNA has been fabricated by treating with polyvinyl alcohol (PVA) and used as a host for the laser dye Rhodamine 6G. The edge emitted spectrum clearly indicated the existence of laser modes and amplified spontaneous emission. Lasing was obtained by pumping with a frequency-doubled Nd:YAG laser at 532 nm. For a pump energy of 10 mJ/pulse, an intense line with FWHM ≈0.2 nm was observed at 566 nm due to selective mode excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to understand the influence of ambient gases on the dynamics of laser-blow-off plumes of multi-layered LiF–C thin film. Plume images at various time intervals ranging from 100 to 3000 ns have been recorded using an intensified CCD camera. Enhancement in the plume intensity and change in size and shape occurs on introducing ambient gases and these changes are highly dependent on the nature and composition of the ambient gas used. Velocity of the plume was found to be higher in helium ambient whereas intensity enhancement is greater in argon environment. The plume shapes have maximum size at 10−2 and 10−1 Torr of Ar and He pressures, respectively. As the background pressure increases further (>10−2 Torr: depending on the nature of gas), the plume gets compressed/focused in the lateral direction. Internal structure formation and turbulences are observed at higher pressures (>10−1 Torr) in both ambient gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic glass alloy Metglas 2826 MB based amorphous magnetic thin films were fabricated by the thermal evaporation technique. Transmission electron micrographs and electron diffraction pattern showed the amorphous nature of the films. Composition of the films was analyzed employing X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy techniques. The film was integrated to a long period fibre grating. It was observed that the resonance wavelength of the fibre grating decreased with an increase in the magnetic field. Change in the resonance wavelength was minimal at higher magnetic fields. Field dependent magnetostriction values revealed the potential application of these films in magnetostrictive sensor devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis report the results obtained from the studies carried out on the laser blow off plasma (LBO) from LiF-C (Lithium Fluoride with Carbon) thin film target, which is of particular importance in Tokamak plasma diagnostics. Keeping in view of its significance, plasma generated by the irradiation of thin film target by nanosecond laser pulses from an Nd:YAG laser over the thin film target has been characterized by fast photography using intensified CCD. In comparison to other diagnostic techniques, imaging studies provide better understanding of plasma geometry (size, shape, divergence etc) and structural formations inside the plume during different stages of expansion.