997 resultados para AIDS SURVIVAL
Resumo:
OBJECTIVE: To investigate relationships between institutional mistrust (systematic discrimination, organizational suspicion, and conspiracy beliefs), HIV risk behaviors, and HIV testing in a multiethnic sample of men who have sex with men (MSM), and to test whether perceived susceptibility to HIV mediates these relationships for White and ethnic minority MSM. METHOD: Participants were 394 MSM residing in Central Arizona (M age = 37 years). Three dimensions of mistrust were examined, including organizational suspicion, conspiracy beliefs, and systematic discrimination. Assessments of sexual risk behavior, HIV testing, and perceived susceptibility to HIV were made at study entry (T1) and again 6 months later (T2). RESULTS: There were no main effects of institutional mistrust dimensions or ethnic minority status on T2 risk behavior, but the interaction of systematic discrimination and conspiracy beliefs with minority status was significant such that higher levels of systematic discrimination and more conspiracy beliefs were associated with increased risk only among ethnic minority MSM. Higher levels of systematic discrimination were significantly related to lower likelihood for HIV testing, and the interaction of organizational suspicion with minority status was significant such that greater levels of organizational suspicion were related to less likelihood of having been tested for HIV among ethnic minority MSM. Perceived susceptibility did not mediate these relationships. CONCLUSION: Findings suggest that it is important to look further into the differential effects of institutional mistrust across marginalized groups, including sexual and ethnic minorities. Aspects of mistrust should be addressed in HIV prevention and counseling efforts.
Resumo:
Chronic human heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased levels of betaAR kinase 1 (betaARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of betaARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of betaARK1 (betaARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca(2+)-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 +/- 1 weeks). In contrast, CSQ/betaARKct mice exhibited a significant increase in mean survival age (15 +/- 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/betaARKct, left ventricular end diastolic dimension 5.60 +/- 0.17 mm vs. 4.19 +/- 0.09 mm, P < 0.005; % fractional shortening, 15 +/- 2 vs. 36 +/- 2, P < 0.005). The enhancement of the survival rate in CSQ/betaARKct mice was substantially potentiated by chronic treatment with the betaAR antagonist metoprolol (CSQ/betaARKct nontreated vs. CSQ/betaARKct metoprolol treated, 15 +/- 1 weeks vs. 25 +/- 2 weeks, P < 0.0001). Thus, overexpression of the betaARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with beta-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of betaARK1 inhibition.
Resumo:
It is commonly accepted that aerobic exercise increases hippocampal neurogenesis, learning and memory, as well as stress resiliency. However, human populations are widely variable in their inherent aerobic fitness as well as their capacity to show increased aerobic fitness following a period of regimented exercise. It is unclear whether these inherent or acquired components of aerobic fitness play a role in neurocognition. To isolate the potential role of inherent aerobic fitness, we exploited a rat model of high (HCR) and low (LCR) inherent aerobic capacity for running. At a baseline, HCR rats have two- to three-fold higher aerobic capacity than LCR rats. We found that HCR rats also had two- to three- fold more young neurons in the hippocampus than LCR rats as well as rats from the heterogeneous founder population. We then asked whether this enhanced neurogenesis translates to enhanced hippocampal cognition, as is typically seen in exercise-trained animals. Compared to LCR rats, HCR rats performed with high accuracy on tasks designed to test neurogenesis-dependent pattern separation ability by examining investigatory behavior between very similar objects or locations. To investigate whether an aerobic response to exercise is required for exercise-induced changes in neurogenesis and cognition, we utilized a rat model of high (HRT) and low (LRT) aerobic response to treadmill training. At a baseline, HRT and LRT rats have comparable aerobic capacity as measured by a standard treadmill fit test, yet after a standardized training regimen, HRT but not LRT rats robustly increase their aerobic capacity for running. We found that sedentary LRT and HRT rats had equivalent levels of hippocampal neurogenesis, but only HRT rats had an elevation in the number of young neurons in the hippocampus following training, which was positively correlated with accuracy on pattern separation tasks. Taken together, these data suggest that a significant elevation in aerobic capacity is necessary for exercise-induced hippocampal neurogenesis and hippocampal neurogenesis-dependent learning and memory. To investigate the potential for high aerobic capacity to be neuroprotective, doxorubicin chemotherapy was administered to LCR and HCR rats. While doxorubicin induces a progressive decrease in aerobic capacity as well as neurogenesis, HCR rats remain at higher levels on those measures compared to even saline-treated LCR rats. HCR and LCR rats that received exercise training throughout doxorubicin treatment demonstrated positive effects of exercise on aerobic capacity and neurogenesis, regardless of inherent aerobic capacity. Overall, these findings demonstrate that inherent and acquired components of aerobic fitness play a crucial role not only in the cardiorespiratory system but also the fitness of the brain.
Resumo:
Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.
Resumo:
Ongoing Cryptococcus gattii outbreaks in the Western United States and Canada illustrate the impact of environmental reservoirs and both clonal and recombining propagation in driving emergence and expansion of microbial pathogens. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV, with no evidence of nuclear genetic exchange, indicating these represent distinct species. C. gattii VGII isolates are causing the Pacific Northwest outbreak, whereas VGIII isolates frequently infect HIV/AIDS patients in Southern California. VGI, VGII, and VGIII have been isolated from patients and animals in the Western US, suggesting these molecular types occur in the environment. However, only two environmental isolates of C. gattii have ever been reported from California: CBS7750 (VGII) and WM161 (VGIII). The incongruence of frequent clinical presence and uncommon environmental isolation suggests an unknown C. gattii reservoir in California. Here we report frequent isolation of C. gattii VGIII MATα and MATa isolates and infrequent isolation of VGI MATα from environmental sources in Southern California. VGIII isolates were obtained from soil debris associated with tree species not previously reported as hosts from sites near residences of infected patients. These isolates are fertile under laboratory conditions, produce abundant spores, and are part of both locally and more distantly recombining populations. MLST and whole genome sequence analysis provide compelling evidence that these environmental isolates are the source of human infections. Isolates displayed wide-ranging virulence in macrophage and animal models. When clinical and environmental isolates with indistinguishable MLST profiles were compared, environmental isolates were less virulent. Taken together, our studies reveal an environmental source and risk of C. gattii to HIV/AIDS patients with implications for the >1,000,000 cryptococcal infections occurring annually for which the causative isolate is rarely assigned species status. Thus, the C. gattii global health burden could be more substantial than currently appreciated.
Resumo:
Although many feature selection methods for classification have been developed, there is a need to identify genes in high-dimensional data with censored survival outcomes. Traditional methods for gene selection in classification problems have several drawbacks. First, the majority of the gene selection approaches for classification are single-gene based. Second, many of the gene selection procedures are not embedded within the algorithm itself. The technique of random forests has been found to perform well in high-dimensional data settings with survival outcomes. It also has an embedded feature to identify variables of importance. Therefore, it is an ideal candidate for gene selection in high-dimensional data with survival outcomes. In this paper, we develop a novel method based on the random forests to identify a set of prognostic genes. We compare our method with several machine learning methods and various node split criteria using several real data sets. Our method performed well in both simulations and real data analysis.Additionally, we have shown the advantages of our approach over single-gene-based approaches. Our method incorporates multivariate correlations in microarray data for survival outcomes. The described method allows us to better utilize the information available from microarray data with survival outcomes.
Resumo:
CD133 is one of the most common stem cell markers, and functional single nucleotide polymorphisms (SNPs) of CD133 may modulate its gene functions and thus cancer risk and patient survival. We hypothesized that potentially functional CD133 SNPs are associated with gastric cancer (GC) risk and survival. To test this hypothesis, we conducted a case-control study of 371 GC patients and 313 cancer-free controls frequency-matched by age, sex, and ethnicity. We genotyped four selected, potentially functional CD133 SNPs (rs2240688A>C, rs7686732C>G, rs10022537T>A, and rs3130C>T) and used logistic regression analysis for associations of these SNPs with GC risk and Cox hazards regression analysis for survival. We found that compared with the miRNA binding site rs2240688 AA genotype, AC + CC genotypes were associated with significantly increased GC risk (adjusted OR = 1.52, 95% CI = 1.09-2.13); for another miRNA binding site rs3130C>T SNP, the TT genotype was associated with significantly reduced GC risk (adjusted OR = 0.68, 95% CI = 0.48-0.97), compared with CC + CT genotypes. In all patients, the risk rs3130 TT variant genotype was significantly associated with overall survival (OS) (adjusted P(trend) = 0.016 and 0.007 under additive and recessive models, respectively). These findings suggest that these two CD133 miRNA binding site variants, rs2240688 and rs3130, may be potential biomarkers for genetic susceptibility to GC and possible predictors for survival in GC patients but require further validation by larger studies.
Resumo:
BACKGROUND: The Notch signaling pathway is constitutively activated in human cutaneous melanoma to promote growth and aggressive metastatic potential of primary melanoma cells. Therefore, genetic variants in Notch pathway genes may affect the prognosis of cutaneous melanoma patients. METHODS: We identified 6,256 SNPs in 48 Notch genes in 858 cutaneous melanoma patients included in a previously published cutaneous melanoma genome-wide association study dataset. Multivariate and stepwise Cox proportional hazards regression and false-positive report probability corrections were performed to evaluate associations between putative functional SNPs and cutaneous melanoma disease-specific survival. Receiver operating characteristic curve was constructed, and area under the curve was used to assess the classification performance of the model. RESULTS: Four putative functional SNPs of Notch pathway genes had independent and joint predictive roles in survival of cutaneous melanoma patients. The most significant variant was NCOR2 rs2342924 T>C (adjusted HR, 2.71; 95% confidence interval, 1.73-4.23; Ptrend = 9.62 × 10(-7)), followed by NCSTN rs1124379 G>A, NCOR2 rs10846684 G>A, and MAML2 rs7953425 G>A (Ptrend = 0.005, 0.005, and 0.013, respectively). The receiver operating characteristic analysis revealed that area under the curve was significantly increased after adding the combined unfavorable genotype score to the model containing the known clinicopathologic factors. CONCLUSIONS: Our results suggest that SNPs in Notch pathway genes may be predictors of cutaneous melanoma disease-specific survival. IMPACT: Our discovery offers a translational potential for using genetic variants in Notch pathway genes as a genotype score of biomarkers for developing an improved prognostic assessment and personalized management of cutaneous melanoma patients.
Resumo:
INTRODUCTION: Platinum agents can cause the formation of DNA adducts and induce apoptosis to eliminate tumor cells. The aim of the present study was to investigate the influence of genetic variants of MDM2 on chemotherapy-related toxicities and clinical outcomes in patients with advanced non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS: We recruited 663 patients with advanced NSCLC who had been treated with first-line platinum-based chemotherapy. Five tagging single nucleotide polymorphisms (SNPs) in MDM2 were genotyped in these patients. The associations of these SNPs with clinical toxicities and outcomes were evaluated using logistic regression and Cox regression analyses. RESULTS: Two SNPs (rs1470383 and rs1690924) showed significant associations with chemotherapy-related toxicities (ie, overall, hematologic, and gastrointestinal toxicity). Compared with the wild genotype AA carriers, patients with the GG genotype of rs1470383 had an increased risk of overall toxicity (odds ratio [OR], 3.28; 95% confidence interval [CI], 1.34-8.02; P = .009) and hematologic toxicity (OR, 4.10; 95% CI, 1.73-9.71; P = .001). Likewise, patients with the AG genotype of rs1690924 showed more sensitivity to gastrointestinal toxicity than did those with the wild-type homozygote GG (OR, 2.32; 95% CI, 1.30-4.14; P = .004). Stratified survival analysis revealed significant associations between rs1470383 genotypes and overall survival in patients without overall or hematologic toxicity (P = .007 and P = .0009, respectively). CONCLUSION: The results of our study suggest that SNPs in MDM2 might be used to predict the toxicities of platinum-based chemotherapy and overall survival in patients with advanced NSCLC. Additional validations of the association are warranted.
Resumo:
MOTIVATION: Technological advances that allow routine identification of high-dimensional risk factors have led to high demand for statistical techniques that enable full utilization of these rich sources of information for genetics studies. Variable selection for censored outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-dimensional predictors present serious challenges. This article develops a computationally feasible method based on boosting and stability selection. Specifically, we modified the component-wise gradient boosting to improve the computational feasibility and introduced random permutation in stability selection for controlling false discoveries. RESULTS: We have proposed a high-dimensional variable selection method by incorporating stability selection to control false discovery. Comparisons between the proposed method and the commonly used univariate and Lasso approaches for variable selection reveal that the proposed method yields fewer false discoveries. The proposed method is applied to study the associations of 2339 common single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs are likely to be associated with overall survival, as reported by previous literature. Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely to modulate survival of CM patients. AVAILABILITY AND IMPLEMENTATION: The related source code and documents are freely available at https://sites.google.com/site/bestumich/issues. CONTACT: yili@umich.edu.
Resumo:
The authors present 2 cases of AIDS revealed by severe recurrent genital herpes simplex. The patients are 2 young, previously healthy, African women without histories of homosexuality or drug abuse. The first patient died after 5 months of follow-up (post mortem findings: viral bronchopneumonia with positive cultures for herpes and cytomegalovirus (CMV), viral colitis due to CMV). The second patient survived. She has been treated, during the last 11 months, for filariasis, buccal and vaginal candidiasis and cerebral toxoplasmosis.
Resumo:
SCOPUS: ar.j
Resumo:
Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages.
Resumo:
In advanced non-small cell lung cancer (NSCLC) platinum based chemotherapy with second generation drugs improves median survival (MS) to 8 months and 29% and 10% at 1 and 2 years. Platinum with a third generation drug can improve survival further (BMJ 1995;311: 899) (Spiro et al. Thorax 2004;59:828 Big Lung Trial; N Engl J Med 2003;346:92 ECOG study). NICE now recommends chemotherapy with platinum and a third generation drug for inoperable NSCLC as the first treatment modality. Methods: We audited survival of 176/461 consecutive patients referred for at least 3 courses of platinum and either gemcitabine or vinorelbine from July 2001 to December 2005. Minimal follow up 17 months. Chemotherapy was given on site. Radical radiotherapy for stage IIIA, palliative radiotherapy and second line drugs were given as felt appropriate. Results: 64% were male. 30 (17%) were <55 years ; 66 (37.5%) age 55–65 years; 63 (35.8%) aged 66–75 and 16 (9.1%) >75 years. 5 (2.8%) were stage II; 46 (26%) stage IIIA; 68 (38%) stage IIIB and 55 (30.8%) stage IV. 68 (38%) had 0– 2 courses; 63 (36%) 3 courses and 44 (25%) had 4 or more.