998 resultados para 550 Earth sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms of Ar release from K-feldspar samples in laboratory experiments and during their geological history are assessed here. Modern petrology clearly established that the chemical and isotopic record of minerals is normally dominated by aqueous recrystallization. The laboratory critique is trickier, which explains why so many conflicting approaches have been able to survive long past their expiration date. Current models are evaluated for self-consistency; especially Arrhenian non-linearity leads to paradoxes. The models testable geological predictions suggest that temperature-based downslope extrapolations often overestimate observed geological Ar mobility substantially. An updated interpretation is based on the unrelatedness of geological behaviour to laboratory experiments. The isotopic record of K-feldspar in geological samples is not a unique function of temperature, as recrystallisation promoted by aqueous fluids is the predominant mechanism controlling isotope transport. K-feldspar should therefore be viewed as a hygrochronometer. Laboratory degassing proceeds from structural rearrangements and phase transitions such as are observed in situ at high temperature in Na and Pb feldspars. These effects violate the mathematics of an inert Ficks Law matrix and preclude downslope extrapolation. The similar upward-concave, non-linear shapes of Arrhenius trajectories of many silicates, hydrous and anhydrous, are likely common manifestations of structural rearrangements in silicate structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we document glacial deposits and reconstruct the glacial history in the Karagl valley system in the eastern Uluda in northwestern Turkey based on 42 cosmogenic 10Be exposure ages from boulders and bedrock. Our results suggest the Last Glacial Maximum (LGM) advance prior to 20.4 1.2 ka and at least three re-advances until 18.6 1.2 ka during the global LGM within Marine Isotope Stage-2. In addition, two older advances of unknown age are geomorphologically well constrained, but not dated due to the absence of suitable boulders. Glaciers advanced again two times during the Lateglacial. The older is exposure dated to not later than 15.9 1.1 ka and the younger is attributed to the Younger Dryas (YD) based on field evidence. The timing of the glaciations in the Karagl valley correlates well with documented archives in the Anatolian and Mediterranean mountains and the Alps. These glacier fluctuations may be explained by the change in the atmospheric circulation pattern during the different phases of North Atlantic Oscillation (NAO) winter indices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chronology and configuration of the Svalbard Barents Sea Ice Sheet (SBSIS) during the Late Weichselian (LW) are based on few and geographically scattered data. Thus, the timing and configuration of the SBSIS has been a subject of extensive debate. We present provenance data of erratic boulders and cosmogenic 10Be ages of bedrock and boulders from Northwest Spitsbergen (NWS), Svalbard to determine the thickness, configuration and chronology during the LW. We sampled bedrock and boulders of mountain summits and summit slopes, along with erratic boulders from coastal locations around NWS. We suggest that a local ice dome over central NWS during LW drained radially in all directions. Provenance data from erratic boulders from northern coastal lowland Reinsdyrflya suggest northeastward ice flow through Liefdefjorden. 10Be ages of high-elevation erratic boulders in central NWS (687836 m above sea level) ranging from 18.3 1.3 ka to 21.7 1.4 ka, indicate that the centre of a local ice dome was at least 300 m thicker than at present. 10Be ages of all high-elevation erratics (>400 m above sea level, central and coastal locations) indicate the onset of ice dome thinning at 2520 ka. 10Be ages from erratic boulders on Reinsdyrflya ranging from 11.1 0.8 ka to 21.4 1.7 ka, indicate an ice cover over the entire Reinsdyrflya during LW and a complete deglaciation prior to the Holocene, but apparently later than the thinning in the mountains. Lack of moraine deposits, but the preservation of beach terraces, suggest that the ice covering this peninsula possibly was cold-based and that Reinsdyrflya was part of an inter ice-stream area covered by slow-flowing ice, as opposed to the adjacent fjord, which possibly was filled by a fast-flowing ice stream. Despite the early thinning of the ice sheet (2520 ka) we find a later timing of deglaciation of the fjords and the distal lowlands. Several bedrock samples (10Be) from vertical transects in the central mountains of NWS pre-date the LW, and suggest either ice free or pervasive cold-based ice conditions. Our reconstruction is aligned with the previously suggested hypothesis that a complex multi-dome ice-sheet-configuration occupied Svalbard and the Barents Sea during LW, with numerous drainage basins feeding fast ice streams, separated by slow flowing, possibly cold-based, inter ice-stream areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landscape evolution and surface morphology in mountainous settings are a function of the relative importance between sediment transport processes acting on hillslopes and in channels, modulated by climate variables. The Niesen nappe in the Swiss Penninic Prealps presents a unique setting in which opposite facing flanks host basins underlain by identical lithologies, but contrasting litho-tectonic architectures where lithologies either dip parallel to the topographic slope or in the opposite direction (i.e. dip slope and non-dip slope). The north-western facing Diemtigen flank represents such a dip slope situation and is characterized by a gentle topography, low hillslope gradients, poorly dissected channels, and it hosts large landslides. In contrast, the south-eastern facing Frutigen side can be described as non-dip slope flank with deeply incised bedrock channels, high mean hillslope gradients and high relief topography. Results from morphometric analysis reveal that noticeable differences in morphometric parameters can be related to the contrasts in the relative importance of the internal hillslope-channel system between both valley flanks. While the contrasting dip-orientations of the underlying flysch bedrock has promoted hillslope and channelized processes to contrasting extents and particularly the occurrence of large landslides on the dip slope flank, the flank averaged beryllium-10 (10Be)-derived denudation rates are very similar and range between 0.20 and 0.26 mm yr1. In addition, our denudation rates offer no direct relationship to basin's slope, area, steepness or concavity index, but reveal a positive correlation to mean basin elevation that we interpret as having been controlled by climatically driven factors such as frost-induced processes and orographic precipitation. Our findings illustrate that while the landscape properties in this part of the northern Alpine border can mainly be related to the tectonic architecture of the underlying bedrock, the denudation rates have a strong orographic control through elevation dependent mean annual temperature and precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upper Jurassic (Kimmeridgian)Upper Cretaceous (Cenomanian) inner platform carbonates in the Western Taurides are composed of metre-scale upward-shallowing cyclic deposits (parasequences) and important karstic surfaces capping some of the cycles. Peritidal cycles (shallow subtidal facies capped by tidal-at laminites or fenestrate limestones) are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Subtidal cycles are of two types and indicate incomplete shallowing. Submerged subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles consist of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure. Subtidal facies occur characteristically in the Jurassic, while peritidal cycles are typical for the Lower Cretaceous of the region. Within the foraminiferal and dasyclad algal biostratigraphic framework, four karst breccia levels are recognized as the boundaries of major second-order cycles, introduced for the rst time in this study. These levels correspond to the KimmeridgianPortlandian boundary, mid-Early Valanginian, mid-Early Aptian and mid-Cenomanian and represent important sea level falls which affected the distribution of foraminiferal fauna and dasyclad ora of the Taurus carbonate platform. Within the KimmeridgianCenomanian interval 26 third-order sequences (types 1 and 2) are recognized. These sequences are the records of eustatic sea level uctuations rather than the records of local tectonic events because the boundaries of the sequences representing 14 Ma intervals are correlative with global sea level falls. Third-order sequences and metre-scale cyclic deposits are the major units used for long-distance, high-resolution sequence stratigraphic correlation in the Western Taurides. Metre-scale cyclic deposits (parasequences) in the Cretaceous show genetical stacking patterns within third-order sequences and correspond to fourth-order sequences representing 100200 ka. These cycles are possibly the E2 signal (126 ka) of the orbital eccentricity cycles of the Milankovitch band. The slight deviation of values, calculated for parasequences, from the mean value of eccentricity cycles can be explained by the currently imprecise geochronology established in the Cretaceous and missed sea level oscillations when the platform lay above fluctuating sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anatolia is situated in the Eastern Mediterranean region between 36 42N and 26 45E. The geological records of paleoglaciations in the high terrains of Anatolia are key archives to quantify paleoclimate change in the Eastern Mediterranean area. The climate of the Eastern Mediterranean region is influenced by three main atmospheric systems: the main middle to high latitude westerlies, the mid-latitude subtropical high-pressure systems, and the monsoon climate. Glacial geological studies in Turkey have started in the late 19th century. Glacial deposits are found mainly in the eastern, northeastern and southern part of the Anatolian Peninsula. Anatolia is the fundamental element to understand the interactions between paleoenvironment, climatic variations, and development of the human societies. As the Taurus and Black Sea Mountains are sensitively situated for the paleoclimatic reconstructions, a chronostratigraphic framework on the paleoglaciation should be elaborated. The timing of the Last Glacial Maximum (LGM) in Anatolia is still unknown. Our first results from Kavron Valley (Kakar Mountains, NE Turkey) are encouraging for the reconstruction of paleoglaciations in Turkey and related paleoclimatological interpretations although it is presently difficult to pinpoint the classical Last Glacial Maximum Younger Dryas Little Ice Age moraine sequences in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulation experiments give insight into the evolving energy partitioning during high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to steady state. The transient regime is crucial for understanding the importance of micro structural processes that may lead to strain localization phenomena in deforming materials. This is particularly important in geological and geodynamic applications where the phenomenon of strain localization happens outside the time frame that can be observed under controlled laboratory conditions. Ourmethod is based on an extension of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter, strain rates, temperature, and lambda factor as well asmesh sensitivity are presented to explore the sensitivity of the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid computational-laboratory-field modeling workflow. The analysis could be improved through independent verifications by thermographic analysis in physical laboratory experiments to independently assess lambda factor evolution under laboratory conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significance of the multi-isotopic record preserved in K-feldspars is assessed on samples from the Aar metagranite, Central Alps, Switzerland having very tight independent geological constraints. Stepwise leaching reveals that two diachronically grown K-feldspar generations coexist: Kfs-1 ( 35 Ma old, Ca-poor, Rb-Cl-rich, with low 87Sr/86Sr and high 206Pb/204Pb) and Kfs-2 ( 10 Ma old, antithetic isotopic signatures deriving from external fluids). Microtextures imaged by cathodoluminescence, backscattered electrons, and electron probe microanalysis are patchy and chemically heterogeneous, with pronounced enrichments in Ba in the retrogressed regions. This confirms the simultaneous presence of fluid-dominated retrogression and recrystallization and isotopic inheritance. The staircase-shaped 40Ar/39Ar age spectrum correlates with the Ca/K and Cl/K signatures. This reflects a mixture of heterochemical K-feldspar generations, and not an intracrystalline Ar gradient caused by diffusion. The shape of the age spectrum and the in vacuo release kinetics proceed from entirely different physical and geological phenomena. What K-feldspars can be effectively used for is to constrain the timing of the fluids that interacted with them by multi-isotopic analyses, rather than to model a cooling history from 39Ar release alone. The identification of multiple mineral generations by imaging combined with multi-isotopic analysis enables the accurate dating of the events of a multistage evolution after the initial crystallization of the rock in which the minerals occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study uses the widths, the spacing and the grain-size pattern of Oligo/Miocene alluvial fan conglomerates in the central segment of the Swiss Alpine foreland to reconstruct the topographic development of the Alps. These data are analysed with models of longitudinal stream profile development, to propose that the Alpine topography evolved from an early transient state where streams adjusted to rock uplift by headward retreat, to a mature phase where any changes in rock uplift were accommodated by vertical incision. The first stage comprises the time interval between ca 31 Ma and 22 Ma, when the Alpine streams deposited many small fans with a lateral spacing of <30 km in the north Alpine foreland. As the range evolved, the streams joined and the fans coalesced into a few large depositional systems with a lateral spacing of ca 80 to 100 km at 22 Ma. The models used here suggest that the overall elevation of the Alps increased rapidly within <5 Myr. The variability in pebble size increased either due to variations in sediment supply, enhanced orographic effects, or preferentially due to a change towards a stormier palaeoclimate. By 22 Ma, only two large rivers carried material into the foreland fans, suggesting that the major Alpine streams had established themselves. This second phase of stable drainage network was maintained until ca 5 Ma, when the uplift and erosion of the Molasse started and streams were redirected both in the Alps and in the foreland. This study illustrates that sedimentological archives of foreland basins can be used to reconstruct the chronology of the topographic development of mountain belts. It is suggested that the finite elevation of mountainous landscapes is reached early during orogeny and can be maintained for millions of years, provided that erosion is efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of long-term historical information derived from paleoecological studies has long been recognized as a fundamental aspect of effective conservation. However, there remains some uncertainty regarding the extent to which paleoecology can inform on specific issues of high conservation priority, at the scale for which conservation policy decisions often take place. Here we review to what extent the past occurrence of three fundamental aspects of forest conservation can be assessed using paleoecological data, with a focus on northern Europe. These aspects are (1) tree species composition, (2) old/large trees and coarse woody debris, and (3) natural disturbances. We begin by evaluating the types of relevant historical information available from contemporary forests, then evaluate common paleoecological techniques, namely dendrochronology, pollen, macrofossil, charcoal, and fossil insect and wood analyses. We conclude that whereas contemporary forests can be used to estimate historical, natural occurrences of several of the aspects addressed here (e.g. old/large trees), paleoecological techniques are capable of providing much greater temporal depth, as well as robust quantitative data for tree species composition and fire disturbance, qualitative insights regarding old/large trees and woody debris, but limited indications of past windstorms and insect outbreaks. We also find that studies of fossil wood and paleoentomology are perhaps the most underutilized sources of information. Not only can paleoentomology provide species specific information, but it also enables the reconstruction of former environmental conditions otherwise unavailable. Despite the potential, the majority of conservation-relevant paleoecological studies primarily focus on describing historical forest conditions in broad terms and for large spatial scales, addressing former climate, land-use, and landscape developments, often in the absence of a specific conservation context. In contrast, relatively few studies address the most pressing conservation issues in northern Europe, often requiring data on the presence or quantities of dead wood, large trees or specific tree species, at the scale of the stand or reserve. Furthermore, even fewer examples exist of detailed paleoecological data being used for conservation planning, or the setting of operative restorative baseline conditions at local scales. If ecologist and conservation biologists are going to benefit to the full extent possible from the ever-advancing techniques developed by the paleoecological sciences, further integration of these disciplines is desirable.