956 resultados para 3-cloropropyl silica gel
Resumo:
This review deals with silica based hybrid materials obtained by the sol-gel method. It involves concepts, classifications and important definitions regarding the sol-gel method that allows obtaining materials with organic and inorganic components dispersed in a molecular or nanometric level. We discuss the properties and characteristics of hybrid materials related to experimental synthesis conditions. We devote a special attention to the nanostructured materials, where the self-organization is imposed by the organic component. Finally, we present some important applications of these materials based on their specific properties.
Resumo:
This work aimed at the synthesis and characterization of particles of modified silica containing the organic filter dibenzoylmethane (DBM) by the hydrolytic sol-gel method, with modifications to the Stöber route. The structures of the resulting Xerogels were characterized by diffuse reflectance UV-VIS spectroscopy in the solid state, infrared absorption spectroscopy, Scanning Electron Microscopy (SEM) and 29Si Nuclear Magnetic Resonance (29Si NRM). The results showed favorable formation of hybrid organic-inorganic nanoparticles with efficient absorption/reflectance of radiation in the UV / VIS range, which enables their potential use as sunscreen.
Resumo:
Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy.
Resumo:
This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB). The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.
Resumo:
The filling of capillaries via the sol-gel process is growing. Therefore, this technical note focuses on disseminating knowledge acquired in the Group of Analytical Chemistry and Chemometrics over seven years working with monolithic stationary phase preparation in fused silica capillaries. We believe that the detailed information presented in this technical note concerning the construction of an alternative high pressurization device, used to fill capillary columns via the sol-gel process, which has promising potential for applications involving capillary electrochromatography and liquid chromatography in nano scale, may be enlightening and motivating for groups interested in developing research activities within this theme.
Resumo:
The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.
Resumo:
The hybrid 3-(1,4-phenylenediamine)propylsilica xerogel was obtained starting from two different organic precursor quantity (5 and 8 mmol) to 22 mmol of TEOS, in the synthesis. The xerogel samples were characterized by using CHN elemental analysis, N2 adsorption-desorption isotherms, infrared thermal analysis. The xerogel was used as metal sorbent for Cu2+, Cd2+ and Pb2+ in aqueous solution with concentration range of 10-3 to 10-5 mmol l-1. The quantity of organic precursor added in the synthesis influences the characteristics of the xerogel as morphology and thermal stability, as well as the metal adsorption capacity.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol for determination of Cu(II) ions in sugar cane spirit (cachaça) is described, based on differential pulse anodic stripping voltammetry (DPASV) procedure. The Cu(II) oxidation peak was observed at 0.03 V (vs. SCE) in phosphate solution (pH 3.0). The results were obtained using optimised conditions such as 100 mV pulse amplitude, 3 min accumulation time, 25 mV s-1 scan rate in phosphate solution pH 3.0, resulting in a linear dynamic range from 8.0 x 10-7 to 1.0 x 10-5 mol L-1 Cu(II) and a limit of detection 2.0 x10-7 mol L-1. Cu(II) spiked in a cachaça sample was determined with 102.5 % mean recovery at mmol L-1 level. Interference from other metallic cations present in the sample was avoided by the standard addition procedure.
Resumo:
Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.
Resumo:
Diversas medidas de proteção contra incêndios têm sido adotadas para minimizar os efeitos negativos do fogo. Produtos vêm sendo testados e aplicados na conservação da umidade de materiais combustíveis para evitar ou retardar a propagação do fogo. Este estudo buscou avaliar a capacidade de um polímero hidrorretentor de manter a umidade do material combustível morto, em diferentes dosagens de aplicação, com vistas à sua utilização como retardante de fogo. Foram feitas 40 parcelas de 1 m x 1 m com 1,2 kg de capim-gordura (Melinis minutiflora P. Beauv.) cada, distribuídas uniformemente. Foi utilizada uma calda de concentração de 0,1 g/l do produto nas dosagens de 0; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; e 4,0 l/m². O estudo foi realizado em parcelas subdivididas com cinco repetições cada e 16 subparcelas. A capacidade de retenção de água foi medida a partir da diferença do peso de matéria úmida e peso de matéria seca do material após ser seco em estufa. Os valores de médias foram estatisticamente diferentes no teste de Tukey a 5% de probabilidade, mas não apresentaram nenhuma correspondência com a sequência de valores dos tratamentos. O Tratamento 6 foi o que obteve a maior média de umidade (35,50%), enquanto o Controle apresentou o menor valor (27,80%). O uso do gel hidrorretentor não conferiu aumento significativo de umidade ao material combustível ao passar dos dias, nas dosagens testadas e nas condições ambientais do estudo, determinando que esse produto não tem uso recomendado na prevenção de incêndios.
Resumo:
OBJETIVOS: testar a eficácia e a tolerância do gel de aroeira (Schinus terebinthifolius Raddi) para tratamento da vaginose bacteriana. MÉTODOS: quarenta e oito mulheres com vaginose bacteriana sintomática (de acordo com os critérios de Amsel) foram incluídas em ensaio clínico randomizado, duplo-cego, controlado, comparando-se o uso do gel vaginal de aroeira (25 casos) com placebo (23 casos). Os principais desfechos avaliados foram: taxa de cura, presença de lactobacilos na colpocitologia depois do tratamento e efeitos colaterais. Realizou-se análise estatística usando os testes chi2 e exato de Fisher, ao nível de significância de 5%. RESULTADOS: adotando-se os parâmetros clínicos de Amsel para vaginose bacteriana, a taxa de cura foi de 84% no grupo da aroeira e 47,8% no grupo placebo (p = 0,008). Observou-se freqüência significativamente maior de lactobacilos na colpocitologia entre as pacientes tratadas com aroeira (43,5%) em relação ao placebo (4,3%) (p = 0,002). Efeitos adversos relacionados ao tratamento não foram freqüentes em ambos os grupos. CONCLUSÕES: o presente estudo indica que o gel vaginal de aroeira é efetivo e seguro para o tratamento da vaginose bacteriana. Além disso, sugerem-se potenciais efeitos benéficos na flora vaginal.
Resumo:
Foi feita uma comparação entre os antígenos (Ag), preparados a partir dos vírus Maedi-Visna (MVV) e Artrite-encefalite Caprina (CAEV) para detecção de anticorpos contra o CAEV em 120 amostras de soro caprino. A sensibilidade e especificidade relativa da imunodifusão em ágar gel (IDAG) usando-se Ag MVV em relação ao Ag CAEV, foi 77,3% e 100%, respectivamente (X2, p<0,01). Assim, para diagnóstico de infecção pelo CAEV recomenda-se apenas o uso de Ag preparado a partir do CAEV.
Resumo:
Cellulose fiber-silica nanocomposites with novel mechanical, chemical and thermal properties have potential to be widely applied in different area. Monodispered silica nanoparticles play an important role in enhancing hybrids properties of hardness, strength, thermal stability etc. On the other hand, cellulose is one of the world’s most abundant and renewable polymers and possesses several unique properties required in many areas and biomedicine. The aim of this master thesis is to study if silica particles from reaction of sodium silicate and sulphuric acid can be adsorbed onto cellulose fiber surfaces via in situ growth. First, nanosilica particles were synthesized. Effect of pH and silica contents were tested. In theoretical part, introduction of silica, methods of preparation of nanosilica from sodium silicate, effect factors and additives were discussed. Then, cellulose fiber-silica nanocomposites were synthesis via route from sodium silicate and route silicic acid. In the experiment of route from sodium silicate, the effects of types of sodium silicate, pH and target ratio of silica to fiber were investigated. From another aspect, the effects of types of sodium silicate, fiber concentration in mixture solution and target ratio of silica to fiber were tested in the experiment of route from silicic acid. Samples were investigated via zeta potential measurement, particle size distribution, ash content measurement and Scanning Electron Microscopy (SEM). The Results of the experiment of preparing silica sol were that the particle size of silica sol was smaller prepared in pH 11.7 than that prepared in pH 9.3. Then in the experiment of synthesis of cellulose fiber-silica nanocomposites, it was concluded that the zeta potential of all the samples were around -16 mV and the highest ash content of all the samples was only 1.4%. The results of SEM images showed only a few of silica particles could be observed on the fiber surface, which corresponded to the value of ash content measurement.
Resumo:
Eighty micrograms red blood cell (RBC) ghosts from patients who had previously exhibited the cutaneous form of loxoscelism (presenting localized dermonecrosis) and the viscerocutaneous form of loxoscelism (presenting dermonecrosis, hemoglobinuria, hematuria, and jaundice) and from controls were incubated with 2.5 µg crude Loxosceles gaucho venom in 5 mM phosphate buffer, pH 7.4, at 37ºC. Among all membrane proteins, quantitative proteolysis of the important integral transmembrane protein 3 increased with venom dose and with incubation time from 30 to 120 min, as demonstrated by gel densitometry. Similar quantitative data were obtained for RBC ghosts from patients and from control subjects, a fact that argues against the possibility of genetic factors favoring the hemolytic viscerocutaneous form. These data suggest that the clinical forms may be different types of the same disease, with the viscerocutaneous form being the result of large amounts of intravascularly injected venom and the superficial form being the result of in situ venom action. Since protein 3 is a housekeeping integral membrane protein, whose genetic deficiency leads to hemolytic anemia, it is reasonable to relate it to the hemolysis which occurs in the viscerocutaneous form of loxoscelism. The venom protease responsible for the process was not inhibited after 120-min incubation by 0.2 mM paramethylsulfonyl fluoride or by 0.2 mM N-ethylmaleimide but was inhibited by 25 mM ethylenediaminetetraacetic acid (a calcium-chelating agent) in 5 mM phosphate buffer at pH 7.4, which suggests that the enzyme is a calcium-dependent metalloprotease.
Resumo:
O presente trabalho compara processos de purificação de enterotoxina estafilocócica A, utilizando cromatografia de afinidade com corante Red A em relação a troca iônica (SP - Sephadex C-25) - permeabilidade em gel (Sephadex G-75). Aplicou-se nas colunas o sobrenadante da cultura de Staphylococcus aureus 722 em caldo contendo 3% de triptona e suplementado com 1% de extrato de levedura, previamente concentradas com Amberlite CG-50. O processo capturou rapidamente a EEA, porém a proporção de 15 mg de resina para 150 mg de toxina causou saturação, recuperando apenas 10 a 30% de toxina do sobrenadante. A cromatografia de afinidade com Red A permitiu a recuperação de 60,87% de toxina aplicada em 76 horas, em relação a 114 horas requeridas para purificação utilizando coluna de troca iônica e permeabilidade em gel, com rendimento de 6,5%. O perfil eletroforético das amostras purificadas indicaram que, a toxina obtida da coluna Red A apresentou teor de pureza superior, na ordem de 90%, em relação a 60% atingida pelo método clássico.