964 resultados para 3-SUBSTITUTED LACTAMS
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.
Resumo:
In the structure of title compound [Rb2(C7H4NO2)2(H2O)2]n the centrosymmetric cyclic dimeric repeating unit comprises two irregular RbO4 complex centres bridged by the carboxylate groups of the 5-nitrosalicylate ligands. The coordination about each Rb is completed by a monodentate water molecule and a phenolic O donor which gives a bridging extension [Rb-O range 3.116(7)-3.135(5)A]. The two-dimensional polymeric structure is stabilized by intermolecular water O-H...O(carboxyl) hydrogen bonds and weak inter-ring pi--pi interactions [minimum ring centroid separation, 3.620(4)A].
Resumo:
Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH4)Al3(PO4)3(OH)•9(H2O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.
Resumo:
The refurbishment of The National Trust House (Basement3), undertaken in 2005, represents heritage consultation, architectural and interior design of a disused and deteriorating subbasement of a historically and culturally significant building situated in Brisbane. Research into rectification and restoration work of the existing structure and interior surfaces (inclusive of masonry work sourced from the Kangaroo Point quarry in the 1860's) formed a significant component of the project. The National Trust House sub basement 3 was refurbished to house the Architectural Practice Academy, a joint initiative of the Queensland Government and the Australian Institute of Architects.
Resumo:
The crystal structures of the proton-transfer compounds of 3,5-dinitrosalicylic acid (DNSA) with a series of aniline-type Lewis bases [aniline, 2-hydroxyaniline, 2-methoxyaniline, 3-methoxyaniline, 4-fluoroaniline, 4-chloroaniline and 2-aminoaniline] have been determined and their hydrogen-bonding systems analysed. All are anhydrous 1:1 salts: [(C6H8N)+(C7H3N2O7)-], (1), [(C6H8NO)+(C7H3N2O7)-], (2), [(C7H10NO)+(C7H3N2O7)-], (3), [(C7H10NO)+(C7H3N2O7)-], (4), [(C6H7FN)+(C7H3N2O7)-], (5), [(C6H7ClN)+(C7H3N2O7)-], (6), and [(C6H9N2)+(C7H3N2O7)-], (7) respectively. Crystals of 1 and 6 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/n (2, 4, 5 and 7) or P21 (3). Unit cell dimensions and contents are: for 1, a = 7.2027(17), b = 7.5699(17), c = 12.9615(16) Å, α = 84.464(14), β = 86.387(15), γ = 75.580(14)o, Z = 2; for 2, a = 7.407(3), b = 6.987(3), c = 27.653(11) Å, β = 94.906(7)o, Z = 4; for 3, a = 8.2816(18), b = 23.151(6), c = 3.9338(10), β = 95.255(19)o, Z = 2; for 4, a = 11.209(2), b = 8.7858(19), c = 15.171(3) Å, β = 93.717(4)o, Z = 4; for 5, a = 26.377(3), b = 10.1602(12), c = 5.1384(10) Å, β = 91.996(13)o, Z = 4; for 6, a = 11.217(3), b = 14.156(5), c = 4.860(3) Å, α = 99.10(4), β = 96.99(4), γ = 76.35(2)o, Z = 2; for 7, a = 12.830(4), b = 8.145(3), c = 14.302(4) Å, β = 102.631(6)o, Z = 4. In all compounds at least one primary linear intermolecular N+-H…O(carboxyl) hydrogen-bonding interaction is present which, together with secondary hydrogen bonding results in the formation of mostly two-dimensional network structures, exceptions being with compounds 4 and 5 (one-dimensional) and compound 6 (three-dimensional). In only two cases [compounds 1 and 4], are weak cation-anion or cation-cation π-π interactions found while weak aromatic C-H…O interactions are insignificant. The study shows that all compounds fit the previously formulated classification scheme for primary and secondary interactive modes for proton-transfer compounds of 3,5-dinitrosalicylic acid but there are some unusual variants.
Resumo:
The structures of two hydrated proton-transfer compounds of 4-piperidinecarboxamide (isonipecotamide) with the isomeric heteroaromatic carboxylic acids indole-2-carboxylic acid and indole-3-carboxylic acid, namely 4-carbamoylpiperidinium indole-2-carboxylate dihydrate (1) and 4-carbamoylpiperidinium indole-3-carboxylate hemihydrate (2) have been determined at 200 K. Crystals of both 1 and 2 are monoclinic, space groups P21/c and P2/c respectively with Z = 4 in cells having dimensions a = 10.6811(4), b = 12.2017(4), c = 12.5456(5) Å, β = 96.000(4)o (1) and a = 15.5140(4), b = 10.2908(3), c = 9.7047(3) Å, β = 97.060(3)o (2). Hydrogen-bonding in 1 involves a primary cyclic interaction involving complementary cation amide N-H…O(carboxyl) anion and anion hetero N-H…O(amide) cation hydrogen bonds [graph set R22(9)]. Secondary associations involving also the water molecules of solvation give a two-dimensional network structure which includes weak water O-H…π interactions. In the three-dimensional hydrogen-bonded structure of 2, there are classic centrosymmetric cyclic head-to-head hydrogen-bonded amide-amide interactions [graph set R22(8)] as well as lateral cyclic amide-O linked amide-amide extensions [graph set R24(8)]. The anions and the water molecule, which lies on a twofold rotation axis, are involved in secondary extensions.
Resumo:
The case study 3 team viewed the mitigation of noise and air pollution generated in the transport corridor that borders the study site to be a paramount driver of the urban design solution. These key urban planning strategies were adopted: * Spatial separation from transport corridor pollution source. A linear green zone and environmental buffer was proposed adjacent to the transport corridor to mitigate the environmental noise and air quality impacts of the corridor, and to offer residents opportunities for recreation * Open space forming the key structural principle for neighbourhood design. A significant open space system underpins the planning and manages surface water flows. * Urban blocks running on east-west axis. The open space rationale emphasises an east-west pattern for local streets. Street alignment allows for predominantly north-south facing terrace type buildings which both face the street and overlook the green courtyard formed by the perimeter buildings. The results of the ESD assessment of the typologies conclude that the design will achieve good outcomes through: * Lower than average construction costs compared with other similar projects * Thermal comfort; A good balance between daylight access and solar gains is achieved * The energy rating achieved for the units is 8.5 stars.
Resumo:
"ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals." -- Publisher website
Resumo:
Clean Energy Agreement of the MPCCC On 10 July 2011, details of the Multi-Party Climate Change Committee’s Clean Energy Agreement for implementing a carbon price were released. This included an agreed package of measures that the Committee considered would enable Australia to meet its emissions reduction targets in an environmentally and economically efficient way. A copy of the agreement can be found on the website of the Department of Climate Change and Energy Efficiency...
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
Although in the late 1990s there was much discussion as to whether the idea of information literacy was necessary or had longevity, global interest in the phenomenon has increased rather than diminished. In the midst of all this activity, what has happened to the way in which we interpret the idea of information literacy in the last decade or more? The label of information literacy has certainly become widely applied, especially to library based programs and remains more popular in formal learning environments.Ultimately information literacy is about peoples’ experience of using information wherever they happen to be. Information literacy is about people interacting, engaging, working with information in many contexts, either individually or in community. Emerging technologies may transform the kinds of information available and how it is engaged with. Nevertheless, we continue to need to understand the experience of information use in order to support people in their information environments. We continue to need to develop programs which reflect and enhance peoples’ experiences of using information to learn in ever widening and more complex settings (Bruce, 2008; Bruce & Hughes, 2010).
Resumo:
In Legal Services Commissioner v Wright [2010] QCA 321 the Queensland Court of Appeal allowed an appeal from the first instance decision. The decision involved the construction of “third party payer” in Part 3.4 of the Legal Profession Act 2007 (Qld).
Resumo:
The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7 % mol, or DS 0.017) of cellulose after dissolution in [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2min]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.
Resumo:
The asymmetric unit of the title co-crystalline 1:2 adduct C12H12N2O2 . 2(C6H3N3O6) contains two independent molecules of bis(4-aminophenyl)sulfone (the drug Dapsone) and four molecules of 1,3,5-trinitrobenzene and is extended into a two-dimensional hydrogen-bonded network structure through amino N-H...O hydrogen-bonding associations with nitro O- atom acceptors. In the two independent Dapsone molecules the inter-ring dihedral angles are 69.0(2) and 63.59(11)deg. Aromatic pi-pi interactions are also found between one of the Dapsone aromatic rings and a trinitrobenzene ring [minimum ring centroid separation 3.576(5)Ang.]. A 4-aminophenyl ring moiety of one of the Dapsone molecules and two nitro groups of a trinitrobenzene are disordered in a 50:50 ratio.
Resumo:
In the structure of the title compound C16H26N+ Cl-, the salt of a precursor in the synthesis of an isoindolin-2-yloxyl free-radical trapping agent, the cations and anions form discrete centrosymetric cyclic dimers through N---H...Cl hydrogen-bonding associations [graph set R2/4(8)].