960 resultados para 3 Models
Resumo:
Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the ClausiusClapeyron equation) and of precipitation at the rate 2-3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~ -0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988-2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
Resumo:
Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.
Resumo:
A method to solve a quasi-geostrophic two-layer model including the variation of static stability is presented. The divergent part of the wind is incorporated by means of an iterative procedure. The procedure is rather fast and the time of computation is only 60–70% longer than for the usual two-layer model. The method of solution is justified by the conservation of the difference between the gross static stability and the kinetic energy. To eliminate the side-boundary conditions the experiments have been performed on a zonal channel model. The investigation falls mainly into three parts: The first part (section 5) contains a discussion of the significance of some physically inconsistent approximations. It is shown that physical inconsistencies are rather serious and for these inconsistent models which were studied the total kinetic energy increased faster than the gross static stability. In the next part (section 6) we are studying the effect of a Jacobian difference operator which conserves the total kinetic energy. The use of this operator in two-layer models will give a slight improvement but probably does not have any practical use in short periodic forecasts. It is also shown that the energy-conservative operator will change the wave-speed in an erroneous way if the wave-number or the grid-length is large in the meridional direction. In the final part (section 7) we investigate the behaviour of baroclinic waves for some different initial states and for two energy-consistent models, one with constant and one with variable static stability. According to the linear theory the waves adjust rather rapidly in such a way that the temperature wave will lag behind the pressure wave independent of the initial configuration. Thus, both models give rise to a baroclinic development even if the initial state is quasi-barotropic. The effect of the variation of static stability is very small, qualitative differences in the development are only observed during the first 12 hours. For an amplifying wave we will get a stabilization over the troughs and an instabilization over the ridges.
Resumo:
Koppen climate classification was applied to the output of atmospheric general circulation models and coupled atmosphere-ocean circulation models. The classification was used to validate model control runs of the present climate and to analyse greenhouse gas warming simulations The most prominent results of the global warming con~putationsw ere a retreat of regions of permafrost and the increase of areas with tropical rainy climates and dry climates.
Resumo:
In recent years a number of chemistry-climate models have been developed with an emphasis on the stratosphere. Such models cover a wide range of time scales of integration and vary considerably in complexity. The results of specific diagnostics are here analysed to examine the differences amongst individual models and observations, to assess the consistency of model predictions, with a particular focus on polar ozone. For example, many models indicate a significant cold bias in high latitudes, the “cold pole problem”, particularly in the southern hemisphere during winter and spring. This is related to wave propagation from the troposphere which can be improved by improving model horizontal resolution and with the use of non-orographic gravity wave drag. As a result of the widely differing modelled polar temperatures, different amounts of polar stratospheric clouds are simulated which in turn result in varying ozone values in the models. The results are also compared to determine the possible future behaviour of ozone, with an emphasis on the polar regions and mid-latitudes. All models predict eventual ozone recovery, but give a range of results concerning its timing and extent. Differences in the simulation of gravity waves and planetary waves as well as model resolution are likely major sources of uncertainty for this issue. In the Antarctic, the ozone hole has probably reached almost its deepest although the vertical and horizontal extent of depletion may increase slightly further over the next few years. According to the model results, Antarctic ozone recovery could begin any year within the range 2001 to 2008. The limited number of models which have been integrated sufficiently far indicate that full recovery of ozone to 1980 levels may not occur in the Antarctic until about the year 2050. For the Arctic, most models indicate that small ozone losses may continue for a few more years and that recovery could begin any year within the range 2004 to 2019. The start of ozone recovery in the Arctic is therefore expected to appear later than in the Antarctic.
Resumo:
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Resumo:
Many global climate models (GCMs) have trouble simulating Southern Annular Mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve our understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy-mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary scale waves, in particular zonal wavenumber 3, is found in a localized region in the south west Pacific. It cancels a large proportion of the positive feedback by synoptic and smaller scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the CMIP-5 models confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.
Resumo:
The dependency of the blood oxygenation level dependent (BOLD) signal on underlying hemodynamics is not well understood. Building a forward biophysical model of this relationship is important for the quantitative estimation of the hemodynamic changes and neural activity underlying functional magnetic resonance imaging (fMRI) signals. We have developed a general model of the BOLD signal which can model both intra- and extravascular signals for an arbitrary tissue model across a wide range of imaging parameters. The model of the BOLD signal was instantiated as a look-up-table (LuT), and was verified against concurrent fMRI and optical imaging measurements of activation induced hemodynamics. Magn Reson Med, 2008. © 2008 Wiley-Liss, Inc.
Resumo:
Activities like the Coupled Model Intercomparison Project (CMIP) have revolutionized climate modelling in terms of our ability to compare models and to process information about climate projections and their uncertainties. The evaluation of models against observations is now considered a key component of multi-model studies. While there are a number of outstanding scientific issues surrounding model evaluation, notably the open question of how to link model performance to future projections, here we highlight a specific but growing problem in model evaluation - that of uncertainties in the observational data that are used to evaluate the models. We highlight the problem using an example obtained from studies of the South Asian Monsoon but we believe the problem is a generic one which arises in many different areas of climate model evaluation and which requires some attention by the community.
Resumo:
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
As in any field of scientific inquiry, advancements in the field of second language acquisition (SLA) rely in part on the interpretation and generalizability of study findings using quantitative data analysis and inferential statistics. While statistical techniques such as ANOVA and t-tests are widely used in second language research, this review article provides a review of a class of newer statistical models that have not yet been widely adopted in the field, but have garnered interest in other fields of language research. The class of statistical models called mixed-effects models are introduced, and the potential benefits of these models for the second language researcher are discussed. A simple example of mixed-effects data analysis using the statistical software package R (R Development Core Team, 2011) is provided as an introduction to the use of these statistical techniques, and to exemplify how such analyses can be reported in research articles. It is concluded that mixed-effects models provide the second language researcher with a powerful tool for the analysis of a variety of types of second language acquisition data.