854 resultados para 2D Technologies
Resumo:
The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.
Resumo:
Livestock are a key asset for the global poor. However, access to relevant information is a critical issue for both livestock development practitioners and the poor themselves. Therefore, the following paper details the creation of an on-line Animal Health Resource Room. The aim was to create an immersive environment, which mimics the benefits of a 3D Virtual Learning Environment without the constraints on download times. Therefore, in the following paper key issues in the dissemination of such a platform such as connectivity and speed are explored within the wider context of the development of the tool itself.
Resumo:
We bridge the properties of the regular triangular, square, and hexagonal honeycomb Voronoi tessellations of the plane to the Poisson-Voronoi case, thus analyzing in a common framework symmetry breaking processes and the approach to uniform random distributions of tessellation-generating points. We resort to ensemble simulations of tessellations generated by points whose regular positions are perturbed through a Gaussian noise, whose variance is given by the parameter α2 times the square of the inverse of the average density of points. We analyze the number of sides, the area, and the perimeter of the Voronoi cells. For all valuesα >0, hexagons constitute the most common class of cells, and 2-parameter gamma distributions provide an efficient description of the statistical properties of the analyzed geometrical characteristics. The introduction of noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α = 0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise withα <0.12. For all tessellations and for small values of α, we observe a linear dependence on α of the ensemble mean of the standard deviation of the area and perimeter of the cells. Already for a moderate amount of Gaussian noise (α >0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α >2, results converge to those of Poisson-Voronoi tessellations. The geometrical properties of n-sided cells change with α until the Poisson- Voronoi limit is reached for α > 2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established. This law allows for an easy link to the Lewis law for areas and agrees with exact asymptotic results. Finally, for α >1, the ensemble mean of the cells area and perimeter restricted to the hexagonal cells agree remarkably well with the full ensemble mean; this reinforces the idea that hexagons, beyond their ubiquitous numerical prominence, can be interpreted as typical polygons in 2D Voronoi tessellations.
Resumo:
The proceedings of the conference