966 resultados para 270307 Microbial Ecology
Resumo:
Phenylalanine ammonia-lyase (EC 4.3.1.5) was purified to homogeneity from the acetone-dried powders of the mycelial felts of the plant pathogenic fungus Rhizoctonia solani. 2. A useful modification in protamine sulphate treatment to get substantial purification of the enzyme in a single-step is described. 3. The purified enzyme shows bisubstrate activity towards L-phenylalanine and L-tyrosine. 4. It is sensitive to carbonyl reagents and the inhibition is not reversed by gel filtration. 5. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography and sucrose-density-gradient centrifugation is around 330000. 6. The enzyme is made up of two pairs of unidentical subunits, with a molecular weight of 70000 (alpha) and 90000 (beta) respectively. 7. Studies on initial velocity versus substrate concentration have shown significant deviations from Michaelis-Menten kinetics. 8. The double-reciprocal plots are biphasic (concave downwards) and Hofstee plots show a curvilinear pattern. 9. The apparent Km value increases from 0.18 mM to as high as 5.0 mM with the increase in the concentration of the substrate and during this process the Vmax, increases by 2-2.5-fold. 10. The value of Hill coefficient is 0.5. 11. Steady-state rates of phenylalanine ammonia-lyase reaction in the presence of inhibitors like D-phenylalanine, cinnamic, p-coumaric, caffeic, dihydrocaffeic and phenylpyruvic acid have shown that only one molecule of each type of inhibitor binds to a molecule of the enzyme. These observations suggest the involvement of negative homotropic interactions in phenylalanine ammonia-lyase. 12. The enzyme could not be desensitized by treatment with HgCl2, p-chloromercuribenzoic acid or by repeated freezing and thawing.
Resumo:
Microorganisms capable of degrading dl-synephrine were isolated from soil of Citrus gardens by enrichment culture, with dl-synephrine as the sole source of carbon and nitrogen. An organism which appears to be an arthrobacter, but which cannot be identified with any of the presently recognized species was predominant in these isolates. It was found to metabolize synephrine by a pathway involving p-hydroxyphenylacetaldehyde, p-hydroxyphenylacetic acid, and 3,4-dihydroxyphenylacetic acid as intermediates. Some of the enzymes of this pathway were demonstrated in cell-free extracts. An aromatic oxygenase, which could also be readily obtained in a cell-free system, was found to degrade 3,4-dihydroxyphenylacetic acid by meta cleavage.
Resumo:
This thesis focuses on how elevated CO2 and/or O3 affect the below-ground processes in semi-natural vegetation, with an emphasis on greenhouse gases, N cycling and microbial communities. Meadow mesocosms mimicking lowland hay meadows in Jokioinen, SW Finland, were enclosed in open-top chambers and exposed to ambient and elevated levels of O3 (40-50 ppb) and/or CO2 (+100 ppm) for three consecutive growing season, while chamberless plots were used as chamber controls. Chemical and microbiological analyses as well as laboratory incubations of the mesocosm soils under different treatments were used to study the effects of O3 and/or CO2. Artificially constructed mesocosms were also compared with natural meadows with regards to GHG fluxes and soil characteristics. In addition to research conducted at the ecosystem level (i.e. the mesocosm study), soil microbial communities were also examined in a pot experiment with monocultures of individual species. By comparing mesocosms with similar natural plant assemblage, it was possible to demonstrate that artificial mesocosms simulated natural habitats, even though some differences were found in the CH4 oxidation rate, soil mineral N, and total C and N concentrations in the soil. After three growing seasons of fumigations, the fluxes of N2O, CH4, and CO2 were decreased in the NF+O3 treatment, and the soil NH4+-N and mineral N concentrations were lower in the NF+O3 treatment than in the NF control treatment. The mesocosm soil microbial communities were affected negatively by the NF+O3 treatment, as the total, bacterial, actinobacterial, and fungal PLFA biomasses as well as the fungal:bacterial biomass ratio decreased under elevated O3. In the pot survey, O3 decreased the total, bacterial, actinobacterial, and mycorrhizal PLFA biomasses in the bulk soil and affected the microbial community structure in the rhizosphere of L. pratensis, whereas the bulk soil and rhizosphere of the other monoculture, A. capillaris, remained unaffected by O3. Elevated CO2 caused only minor and insignificant changes in the GHG fluxes, N cycling, and the microbial community structure. In the present study, the below-ground processes were modified after three years of moderate O3 enhancement. A tentative conclusion is that a decrease in N availability may have feedback effects on plant growth and competition and affect the N cycling of the whole meadow ecosystem. Ecosystem level changes occur slowly, and multiplication of the responses might be expected in the long run.
Resumo:
Productivity is predicted to drive the ecological and evolutionary dynamics of predator-prey interaction through changes in resource allocation between different traits. However, resources are seldom constantly available and thus temporal variation in productivity could have considerable effect on the species' potential to evolve. To study this, three long-term microbial laboratory experiments were established where Serratia marcescens prey bacteria was exposed to predation of protist Tetrahymena thermophila in different prey resource environments. The consequences of prey resource availability for the ecological properties of the predator-prey system, such as trophic dynamics, stability, and virulence, were determined. The evolutionary changes in species traits and prey genetic diversity were measured. The prey defence evolved stronger in high productivity environment. Increased allocation to defence incurred cost in terms of reduced prey resource use ability, which probably constrained prey evolution by increasing the effect of resource competition. However, the magnitude of this trade-off diminished when measured in high resource concentrations. Predation selected for white, non-pigmented, highly defensive prey clones that produced predation resistant biofilm. The biofilm defence was also potentially accompanied with cytotoxicity for predators and could have been traded off with high motility. Evidence for the evolution of predators was also found in one experiment suggesting that co-evolutionary dynamics could affect the evolution and ecology of predator-prey interaction. Temporal variation in resource availability increased variation in predator densities leading to temporally fluctuating selection for prey defences and resource use ability. Temporal variation in resource availability was also able to constrain prey evolution when the allocation to defence incurred high cost. However, when the magnitude of prey trade-off was small and the resource turnover was periodically high, temporal variation facilitated the formation of predator resistant biofilm. The evolution of prey defence constrained the transfer of energy from basal to higher trophic levels, decreasing the strength of top-down regulation on prey community. Predation and temporal variation in productivity decreased the stability of populations and prey traits in general. However, predation-induced destabilization was less pronounced in the high productivity environment where the evolution of prey defence was stronger. In addition, evolution of prey defence weakened the environmental variation induced destabilization of predator population dynamics. Moreover, protozoan predation decreased the S. marcescens virulence in the insect host moth (Parasemia plantaginis) suggesting that species interactions outside the context of host-pathogen relationship could be important indirect drivers for the evolution of pathogenesis. This thesis demonstrates that rapid evolution can affect various ecological properties of predator-prey interaction. The effect of evolution on the ecological dynamics depended on the productivity of the environment, being most evident in the constant environments with high productivity.
Resumo:
This study investigated the potential use of sugarcane bagasse as a feedstock for oil production through microbial cultivation. Bagasse was subjected to dilute acid pretreatment with 0.4 wt% H2SO4 (in liquid) at a solid/liquid ratio of 1:6 (wt/wt) at 170 °C for 15 min, followed by enzymatic hydrolysis of solid residue. The liquid fractions of the pretreatment process and the enzymatic hydrolysis process were detoxified and used as liquid hydrolysate (SCBLH) and enzymatic hydrolysate (SCBEH) for the microbial oil production by oleaginous yeast (Rhodotorula mucilaginosa) and filamentous fungi (Aspergillus oryzae and Mucor plumbeus). The results showed that all strains were able to grow and produce oil from bagasse hydrolysates. The highest oil concentrations produced from bagasse hydrolysates were by M. plumbeus at 1.59 g/L (SCBLH) and 4.74 g/L (SCBEH). The microbial oils obtained have similar fatty acid compositions to vegetable oils, indicating that the oil can be used for the production of second generation biodiesel. On the basis of oil yields obtained by M. plumbeus, from 10 million t (wet weight) of bagasse generated annually from sugar mills in Australia, it is estimated that the total biodiesel that could be produced would be equivalent to about 9% of Queensland’s diesel consumption.
Resumo:
The seasonal occurrence of sea ice that annually covers almost half the Baltic Sea area provides a unique habitat for halo- and cold temperature-tolerant extremophiles. Baltic Sea ice biology has more than 100 years of tradition that began with the floristic observation of species by the early pioneers using light microscopic techniques that were the only thing available at the time. Since the discovery of life within sea ice, more technologies have become available for taxonomy. Electron microscopy and genetic evidence have been used to identify sea ice biota revealing increased numbers of taxa. Meanwhile ecologists have used light microscopic cell enumeration in addition to the chemical and physical properties of sea ice in attempts to explain the food web structure of sea ice and its functions. Thus, during the Baltic winter, the sea ice hosts more abundant and diverse microbial communities than the water column beneath it. These communities are typically dominated by autotrophic diatoms together with a diverse assortment of dinoflagellates, auto- and heterotrophic flagellates, ciliates, metazoan rotifers and bacteria, which are mostly responsible for the recycling of nutrients. This thesis comprises ecological and systematic studies. In addition to the results of the previous studies carried out on landfast ice, the data presented here provide new insight into the spatial distribution of pelagial sea ice, which has remained largely unexplored. The studies reveal spatial heterogeneity in the pelagial sea ice of the Gulf of Bothnia. There were mismatches in chlorophyll-a concentrations and in photosynthetic efficiencies of the communities studied. The temporal succession was followed and experimental studies performed investigating the community responses towards increased or decreased light in landfast ice in the Gulf of Finland. The systematic studies carried out with established dinoflagellate cultures revealed a new resting cyst belonging to common sea ice dinoflagellate, Scrippsiella hangoei (Schiller) Larsen 1995. The cyst can be used to explain the overwintering of this species during prolonged periods of darkness. The dissimilarities and similarities in the material isolated from the sea ice called for description of a new subspecies Heterocapsa arctica ssp. frigida. The cells obtained in the cultured material were unlike those of the previously described species, necessitating description of ssp. frigida. As a result of its own unique habitus, the subspecies had been noted by Finnish taxonomists during the past three decades and thus its annual occurrence and geographical distribution in the Baltic Sea. This illustrates how combining ecology and systematics increases our understanding of organisms.
Resumo:
Many types of micro-organisms inhabit iron ore deposits contributing to biogenic formation and conversion of iron oxides and associated minerals. Bacteria such as Paenibacillus polymyxa arc capable of significantly altering the surface chemical behaviour of iron ore minerals such as haematite, alumina, calcite and silica. Differing mineral surface affinities of bacterial cells and metabolic products such as proteins and polysaccharides can be utilised to induce their flotation or flocculation. Mineral-specific bioreagents such as proteins are generated when bacteria are grown in the presence of haematite, alumina, calcite and silica. Alumina-grown bacterial cells and proteins separated from such cells were found to be capable of separating alumina from haematite. Biodegradation of iron ore flotation collectors such as amines and oleates can be effectively utilised to achieve environmental control in iron ore processing mills.
Resumo:
The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear
Resumo:
Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO2 and CH4). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH4 oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal peatland habitats. The results indicate that microbial community responses to WLD are complex but dependent on peatland type, litter quality, depth, and variable among microbes.