999 resultados para 20-202
Resumo:
The hydroxyapatite (HA) nanocrystals of 100-200 nm in length and 20-30 nm in width were hydrothermally synthesized by the reaction of phosphoric acid and calcium hydroxide. Lactic acid oligomer surface grafted HA(op-HA) nanoparticles were obtained by oligomeric lactic acid with a certain molecular weight grafting onto the HA surface to form a Ca carboxylate bond in the absence of any catalyst. The op-HA was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposite of op-HA/PLGA. FTIR, TGA, ESEM and EDX were used to analyze grafting reaction, the graft ratio of op-HA, surface topography and calcium deposition of the composites, respectively. The rabbit osteoblasts were seeded and cultured on the surface of composites in vitro. The cell morphology, adhesion, proliferation and gene expression were evaluated with FITC staining, NIH image J software and the analysis of real-time PCR, respectively. The results show that the graft ratio of op-HA is 8.3% (mass fraction). The op-HA/PLGA nanocomposite possessed more suitable surface properties, including roughness and plenty of calcium and phosphor. It exhibited better cell adhesion, spreading and proliferation of rabbit osteoblasts, compared to pure PLGA.
Resumo:
SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.
Resumo:
A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M + n + n' matrix + H](+) or [M + n + n' matrix + Na](+) (n = the number of cysteine residues, n' = 1, 2, ..., n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, alpha-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and alpha-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated.
Resumo:
The asymmetric Michael addition of aldehydes to nitroolefins was investigated using L-prolinamide derivatives of 2-(2'-piperidinyl)pyridine as catalyst and a variety of phenols as co-catalyst. Extensive screening toward the effect of prolinamides, phenols, and solvents on this transformation revealed that a combination of (S)-2-(2'-piperidinyl)pyridine-derived trans-4-hydroxy-L-prolinamide 2c, (S)-1,1'-bi-2-naphthol, and dichloromethane was a promising system. This system was shown to be amenable to a rich variety of aldehydes and nitroolefins and afforded the nitroaldehyde products with excellent yield, enantiomeric excess (up to 99%) and diastereoselectivity ratio (up to 99/1), even in the case of 1 mol % catalyst loading and 1.5 equiv of aldehydes.
Resumo:
The spectrophotometric titration by sodium hydroxide of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin ((OH)(1)PH2) is studied as a function of solvent composition of DMF-H2O binary solvent mixture ([OH-] = 0.04 M). Combining the structure changes of the porphyrin and the "four orbital" model of Gouterman, many features of the optical spectra of this deprotonated para-hydroxy-substituted tetraphenylporphyrin in different composition of binary solvent mixtures can be rationalized. In highly aqueous solvents, the changes of the titration curves are shown to be mainly due to hydrogen-bonding of the oxygen of the phenoxide anion group by the hydroxylic solvent, Which decreases the energy of the phenoxide anion pi orbital. Thus the phenoxide anion pi orbital cannot cross over the porphyrin Tr orbital being a different HOMO. However, its energy is close to that of the porphyrin pi orbitals. As a result, in the visible region, no charge-transfer band is observed, while in the visible-near region, the Soret peak split into two components. In nonaqueous solvents, the changes are mainly attributed to further deprotonation of pyrrolic-Hs of (OH) 1PH2 by NaOH and coordination with two sodium ions to form the sodium complex of (OH) 1PH2, which turns hyperporphyrin spectra of deprotonated of phenolic-H of (OH)(1)PH2 into three-banded spectra of regular metalloporphyrin.
Resumo:
Phosphors CaYBO4:RE3+ (RE = Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.
Resumo:
Icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy powder was ball-milled with 20 mass% Ni, and the effect of the ball-milling time (t) on crystallographic and electrochemical characteristics were investigated. The amounts of icosahedral quasicrystalline and Ni phases decreased when ball-milling time increased from 30 to 180 min. The powder consisted of amorphous and (Ni and Ti) phases after 360 min of ball-milling. The maximum discharge capacity of the powder electrodes first increased from 89 (t = 0 min) to 192 mAh g(-1) (t = 180 min), and then decreased to 138 mAh g(-1) (t = 360 min). The high-rate dischargeability and the discharge capacity after 15 cycles increased with increasing ball-milling time.
Resumo:
Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8
Resumo:
The IR spectrum and B-11 and Al-27 MAS NMR spectra of Al18B4O33 are presented and discussed in relation to the possible existence of boron atoms substituting for aluminum atoms. The IR spectrum shows that the strong vibrations of the BO3 groups are present in the 1 500 similar to1 200 cm(-1) region, and very weak bands of BO4 units art present in the region from 1 000 to 1 100 cm(-1). B-11 MAS NMR spectrum indicates that the strong signal for BOB units appears in the region from delta +5 to delta +20, and the very weak signal for BO4 units is at about delta -1, while Al-27 MAS NMR spectrum shows five peaks at about delta +62, +42.1, +14, -4.7 and -6.4, originating from AlO4, AlO4, AlO5, AlO6 and AlO6, respectively, These results reveal that there are minor BO4 units in Al18B4O33, indicating that a small amount of B atoms substitute for Al atoms in the 4-fold coordination.
Resumo:
A charge transfer salt, (Bu4N)(4) (C5H6)[(HSiMo11MoO40)-Mo-VI-O-V] has been photochemically synthesized from (Bu4N)(4)SiMo12O40 and 1.3-cyclopentadiene and Characterized, by elemental analysis, IR spectra, solid diffusion reflectance electronic spectra, CV and ESR. The X-ray crystal structure revealed that the title complex crystal data are as follows: triclinic, space group P (1) over bar, a = 14.347(3), b = 14.423(3), c = 27.158(5) Angstrom, alpha = 96.90(3), beta = 104.18(3), gamma = 98.20(3)degrees, V = 5322(2) Angstrom (3), Z = 2, M-r = 2855. 30, D-c = 1.782g.cm(-3), F(000) = 2860, R = 0.0719, wR = 0.198. The title compound is composed of 1.3-cyclopentadiene, four tetrabutylammonium and [(SiMo11MoO40)-Mo-VI-O-V](4-) anion.
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
The electron transfer and structure of microperoxidase-11(MP-11) in solution and at electrode/solution interface were studied by electrochemical, resonance Raman and surface-enhanced Raman spectroscopic techniques. Results show that the central iron in heme group was six-coordinated in solution, whereas it was converted to five-coordinated state as MP-11 was adsorbed on the surface of a roughened silver electrode, due to the reorientation of MP-11 molecules. The electrochemical properties of MP-11 were directly affected by the coordination state of heme iron.
Resumo:
Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.
Resumo:
Matrix effects arising from ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine in inductively coupled plasma mass spectrometry have been studied. Addition of ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine into solution has an enhancement effect on the signal intensity of analyte with ionization potential between 9 and 11 eV. The ethylenediamine and triethanolamine have higher enhancement effect on the signal intensity of Hg than that of ethanol, propanol, glycerol and acetic acid. Addition of ethylenediamine and triethanolamine into solution has a suppression effect on the signal intensity of Ph and Sr. The mechanism of the enhancement or suppression was investigated. The signal enhancement of Hg in the presence of ethylenediamine and triethanolamine is not caused by improved degree of ionization of Hg and nebulization efficiency. The suppression effects of Ph and Sr in the presence of ethylenediamine and triethanolamine are due to decrease of atomization efficiency of these elements. A method for the determination of Hg in the biological standard samples Ly ICP-MS was developed.
Resumo:
A new carboxylic acid ligand (o-amino-4-hexadecane benzoic acid, AHBA) and a corresponding terbium complex (Tb(AHB)(3)) were synthesized and characterized. A multilayer electroluminescent device with poly(N-vinylcarbazole) (PVK), 2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD) and the terbium complex as emissive layer was fabricated: glass substrate/ITO/PPV/PVK:-To(AHB)(3):PBD/Alq(3)/Al. The photoluminescence (PL) and electroluminescence (EL) spectra were discussed. This EL cell exhibited characteristic emission of terbium ions with a maximum luminance of 35 cd/m(2) at 20 V. (C) 2000 Elsevier Science S.A. All rights reserved.