982 resultados para 2,4-dichlorophenol


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1,2,4,5-Tetrazines are six-membered heterocyclic compounds in which the four nitrogen atoms are displayed in a symmetric fashion. Their reactivity is quite different from other heterocyclic aromatic systems due to its unique electron-withdrawing character, comparable to tetra-nitrobenzene. 1 In particular, 1,2,4,5- tetrazines are known to take part in [4+2] inverse-Diels–Alder cycloaddition processes which efficiently lead to the construction of substituted pyridazine systems that are important in drug development and biomarker applications. 2 However, the electronic character of 1,2,4,5-tetrazines hampered the development of 3- ethynyl- and 3,6-diethynyl-1,2,4,5-tetrazine derivatives for molecular electronic applications, proved by the scarcity of examples found in the literature. 3 Herein, we describe the synthesis and characterization of two novel ethynyl-based 1,2,4,5-tetrazine derivatives. Synthesis of 3,6-(4-bromophenyl)-1,2,4,5-tetrazine precursor (1) was achieved in good yield by Pinner’s method, starting from 4-bromobenzonitrile. Despite its low solubility in common organic solvents, this precursor was found to react smoothly under typical Sonogashira coupling conditions to selectively afford the 3-ethynyl (2) and 3,6-diethynyl (3) protected derivatives (Figure 1). Reaction conditions were evaluated in order to provide the best yields and to promote selectivity of the mono- or disubstituted ethynyl derivatives. Finally, deprotection was achieved affording, in the case of compound 3, an unprecedented 3,6- diethynyl-1,2,4,5-tetrazine compound. Time-Dependent Density Functional Theory (TDDFT) calculations for both deprotected ethynyl derivatives were used to simulate electronic spectra. A deep knowledge of the relevant electronic transitions involved and quantitatively satisfactory results of the calculated electronic excitations in comparison with experimental data were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New sensory materials based on p-phenylene ethynylene trimers integrating calix[4]arene receptors (CALIX-PET) and tert-butylphenol (TBP-PET) moieties have been synthesized and their sensitivity and selectivity for the detection of nitroaromatic compounds (NACs) such as nitrobenzene (NB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT) and picric acid (PA) investigated in fluid phase and solid-state. It was found that both fluorophores displayed high sensitivities toward NACs detection in solution as evaluated by the Stern-Volmer formalism. For all the tested explosives, the ratio of fluorescence intensities (F-0/F) is a linear function of the quencher concentration only after appropriate correction of fluorescence quenching data for inner-filter effects. The quenching efficiencies for CALIX-PET and TBP-PET follow the order PA >> TNT > DNT > NB, which correlate well with the quenchers electron affinities as evaluated from their LUMOs energies thereby suggesting a photoinduced electron transfer as the dominant mechanism of fluorescence quenching. The selectivity of these sensors was checked against exemplar interferents possessing differentiated electronic properties (benzoic acid, 2,4-dichlorophenol and benzoquinone) and reduced quenching activity was detected. The quenching efficiencies and response times of the two fluorophores in the solid-state toward NB, 2,4-DNT and TNT vapors were evaluated through steady-state fluorescence quenching experiments with the materials dispersed in polymeric matrices or as neat films. The most significant fluorescence quenching responses were achieved for drop-casted films of TBP-PET upon exposure to nitroaromatics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a spectrophotometric method for the determination of hydrogen peroxide during photodegradation reactions. The method is based on the reaction of H2O2 with amonium metavanadate in acidic medium, which results in the formation of a red-orange color peroxovanadium cation, with maximum absorbance at 450 nm. The method was optimized using the multivariate analysis providing the minimum concentration of vanadate (6.2 mmol L-1) for the maximum absorbance signal. Under these conditions, the detection limit is 143 mu mol L-1. The reaction product showed to be very stable for samples of peroxide concentrations up to 3 mmol L-1 at room temperature during 180 h. For higher concentrations however, samples must be kept refrigerated (4 degrees C) or diluted. The method showed no interference of Cl- (0.2-1.3 mmol L-1), NO3- (0.3-1.0 mmol L-1), Fe3+, (0.2-1.2 mmol L-1) and 2,4-dichlorophenol (DCP) (0.2-1.0 mmol L-1). When compared to iodometric titration, the vanadate method showed a good agreament. The method was applied for the evaluation of peroxide consumption during photo-Fenton degradation of 2,4-dichlorophenol using blacklight irradiation. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simultaneous method for the trace determination of acidic, neutral herbicides and their transformation products in estuarine waters has been developed through an on-line solid-phase extraction method followed by liquid chromatography with diode array and mass spectrometric detection. An atmospheric pressure chemical ionization (APCI) interface was used in the negative ionization mode after optimization of the main APCI parameters. Limits of detection ranged from 0.1 to 0.02 ng/ml for 50 mi of acidified estuarine waters preconcentrated into polymeric precolumns and using time-scheduled selected ion monitoring mode. Two degradation products of the acidic herbicides (4-chloro-2-methylphenol and 2,4-dichlorophenol) did not show good signal response using APCI-MS at the concentration studied due to the higher fragmentor voltage needed for their determination For molinate and the major degradation product of propanil, 3,4-dichloroaniline, positive ion mode was needed for APCI-MS detection. The proposed method was applied to the determination of herbicides in drainage waters from rice fields of the Delta del Ebro (Spain). During the S-month monitoring of the herbicides, 8-hydroxybentazone and 4-chloro-2-methylphenoxyacetic acid were successively found in those samples. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Halogen-containing aromatics, mainly bromine-containing phenols, are harmful compounds contaminating pyrolysis oil from electronic boards containing halogenated flame retardants. In addition, theirformation increases the potential for evolution of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) at relatively low temperature (up to 500 °C). As a model compound, 2,4-dibromophenol (DBP) was pyrolyzed at 290-450 °C. While its pyrolysis in a nitrogen flow reactor or in encapsulated ampules yields bromine-containing phenols, phenoxyphenols, PBDDs, and PBDFs, pyrolysis of DBP in a hydrogen-donating medium of polypropylene (PP) at 290-350 °C mainly results in the formation of phenol and HBr, indicating the occurrence of a facile hydrodebromination of DBP. The hydrodebromination efficiency depends on temperature, pressure, and the ratio of the initial components. This thermal behavior of DBP is compared to that of 2,4-dichlorophenol and decabromodiphenyl ether. A treatment of halogen-containing aromatics with PP offers a new perspective on the development of low-environmental-impact disposal processes for electronic scrap. © 2005 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of K-3[Cr(ox)(3)] (ox = oxalate) with nickel(II) and tris(2-aminoethyl)amine (tren) in aqueous solution resulted in isolation of the bimetallic assembly [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O. The polymeric complex {[Ni-2(tren)(3)][ClO4](4). H2O}(n) has been prepared by reaction of nickel(II) perchlorate and tren in aqueous solution. From the same reaction mixture the complex [Ni-2(tren)(2)(aepd)][ClO4](4). 2H(2)O (aepd = N-(2-aminoethyl)pyrrolidine-3,4-diamine), in which a bridging tren ligand contains a carbon-carbon bond between two arms forming a substituted pyrrolidine, has been isolated. The complexes have been characterized by X-ray crystallography. The magnetic susceptibility (300-4.2 K) and magnetization data (2, 4 K, H = 0-5 T) for {[Ni-2(tren)(3)][ClO4](4). H2O}(n) (300 K , 4.23 mu(B)) exhibit evidence of weak antiferromagnetic coupling and zero field splitting (2J = -1.8 cm(-1); \ D\ = 2 cm(-1)) at low temperature. For [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O the susceptibility data at 300 K are indicative of uncoupled nickel(II) and chromium(III) sites with zero-field splitting and intramolecular antiferromagnetic coupling predicted at low temperature.