997 resultados para 119-737A
Resumo:
A virtually complete composite history of Cenozoic pelagic sedimentation was recovered from ODP Sites 738 (62°43' S) and 744 (61°35' S), drilled during Leg 119 on the Kerguelen Plateau. An excellent magnetobiochronologic record was obtained from upper Eocene through Holocene sediments at Site 744, and an expanded lower Paleocene through lower Oligocene sequence was cored at Hole 738. Analysis of the stratigraphic distribution of over 125 planktonic foraminifer taxa from these sites reveals changes in species composition that were strongly influenced by the climatic evolution of Antarctic water masses. Early Paleocene planktonic foraminifer assemblages are nearly identical in species composition to coeval assemblages from low and middle latitude sites, showing the same patterns of post-extinction recovery and taxonomic radiation. Biogeographic isolation, revealed by the absence of tropical keeled species, became apparent by late early Paleocene time. Diversity increased near the Paleocene/Eocene boundary when keeled morozovellids immigrated to the Kerguelen Plateau. Greatest diversity (23 species) was achieved by early Eocene time, corresponding to a Cenozoic warming maximum that has been recognized in lower Eocene deep sea and terrestrial sediments worldwide. A gradual decline in diversity from the late early through middle Eocene, primarily due to the disappearance of acarininids, parallels the record of cooling paleotemperatures in Southern Ocean surface waters. Chiloguembelina-dominated assemblages appeared in the late middle Eocene and persisted through the early Oligocene as Antarctic surface waters became thermally isolated. Late Eocene and early Oligocene assemblages exhibit considerably lower diversity than the older Eocene faunas, and were dominated by chiloguembelinids, subbotinids, and catapsydracids during a time of pronounced climatic cooling and development of continental glaciation on East Antarctica. The small foraminifer Globigerinit? juvenilis replaced chiloguembelinids as the dominant taxon during the late Oligocene. Diversity increased slightly toward the end of the late Oligocene with new appearances of several tenuitellid, globoturborotalitid, and globigerinid species. The trend toward diminishing planktonic foraminifer diversity was renewed during the late early Miocene as siliceous productivity increased in the Antarctic surface waters, culminating with the reduction to nearly monospecific assemblages of Neogloboqu?drin? p?chyderm? that occur in Pliocene-Holocene biosiliceous sediments. An Antarctic Paleogene zonal scheme previously devised for ODP Sites 689 and 690 in the Weddell Sea is used to biostratigraphically subdivide the Kerguelen Plateau sequence. The definition of one Antarctic Paleogene biozone is modified in the present study to facilitate correlation within the southern high latitudes. The ages of 13 late Eoceneearly Miocene datum events are calibrated based on a magnetobiochronologic age model developed for Site 744.
Resumo:
Ocean Drilling Program inorganic geochemistry procedures routinely overlook more than 99% of the sediment column. Present and past biogeochemical reactions alter the sediment record; however, most of these reaction zones are bypassed by the normal methods where samples are collected every 30 m. A new approach to increase resolution was introduced during Leg 119. Ten milliliters of sediment provided interstitial-water samples for ammonia, silica, sulfate, magnesium, and calcium analyses. The new method introduced some systematic differences in concentrations, as well as some decrease in precision. A number of advantages, however, may warrant using the method in some instances. In cases where routine interstitial-water data showed anomalous results, core sections were retrieved from the storage facility and resampled. The new high-resolution procedure was used to provide water samples in cases were water contents were low and routine squeezing could not recover pore water.
Resumo:
The occurrence of Quaternary and Oligocene silicoflagellates at two Ocean Drilling Program (ODP) Leg 119 Holes (736A and 744A) on the Kerguelen Plateau in the Southern Ocean was investigated to compare species distributions to Northern Hemisphere floras. This abstract gives the data determined (Tables 1 and 2) for 24 samples and few preliminary remarks. Quaternary assemblages of Hole 736A are noteworthy for the absences of key North Pacific zonal guide species such as Bachmannocena quadrangula, Dictyocha aculeata, Dictyocha subarctios, and Distephanus octangulatus (Bukry and Monechi, 1985). Other species such as Distephanus floridus, Distephanus speculum elongatus, and Mesocena octagona show limited ranges in Hole 736A and may help to subdivide the Quaternary locally. The late Oligocene assemblages of Hole 744A contain widely distributed species of Distephanus and Naviculopsis, which permit correlation to lower latitude assemblages. They also contain the high-latitude acme of Distephanus raupii which was first noted at Deep Sea Drilling Project (DSDP) Hole 278 (56°3.42'S, 160°04.29'E, water depth 3689 m) by Perch-Nielsen (1975) and Bukry (1975). Study of Hole 744A assemblages suggests that D. raupii developed from pentagonal Dictyocha deflandrei deflandrei. A final note on the Hole 744A assemblages is the brief late Oligocene acme (25%) of Dictyocha sp. aff. D. spinosa in Sample 119-744A-13H-4, 65-67 cm, which provides a direct correlation to the acme (16%) in DSDP Sample 29-278-31R-CC (Perch-Nielsen, 1975) in the Southern Ocean. Most of the taxonomy used in the tables is documented in earlier publications of the DSDP Initial Reports (see Bukry in Volumes 16, 35, 37, 40, 44, 49, 54, 67, 68, 69, 81, and 95). Also, see Loeblich et al. (1968) and Perch-Nielsen (1985) for extensive taxonomy and illustrations.