973 resultados para 114-1
Resumo:
Authigenic gypsum, pyrite, and glauconite are disseminated throughout an unusually long (346 m) Miocene section of mixed biogenic carbonate and diatomaceous ooze drilled on the Falkland Plateau at DSDP Site 329 (water depth, 1519 m). The present organic carbon content of the sediment is low, ranging between 0.1 and 0.7%. Gypsum occurs as euhedral single or twinned crystals of selenite up to 5 mm in diameter, sometimes in the form of gypsum rosettes. These crystals are intact and unabraded, comprising up to 4% of the washed sample. The authigenic nature of the gypsum is demonstrated by the presence of diatoms and radiolarians embedded within the gypsum crystals. The gypsum co-occurs with pyrite and glauconite in these samples. The pyrite occurs as framboids, foraminiferal infillings, rods, and granular sheetlike masses composed of pyrite octahedra. The glauconite occurs as foraminiferal infillings and as free grains. The gypsum and pyrite were identified by energy-dispersive X-ray analysis and scanning electron micrographs. Some of the gypsum has grown on pyrite, indicating that it precipitated after the pyrite, perhaps in response to a change in pH conditions. The formation of the mineral suite can be explained by current models of in situ sulfide and sulfate precipitation coincident with diagenesis and oxidation of much of the original organic carbon.
Resumo:
The sensitivity of brightness temperature (T(B)) at 6.9, 10.7, and 18.7 GHz from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations is investigated over five winter seasons (2002-2007) on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada. The T(B) measurements are compared to ice thicknesses obtained with a previously validated thermodynamic lake ice model. Lake ice thickness is found to explain much of the increase of T(B) at 10.7 and 18.7 GHz. T(B) acquired at 18.7 GHz (V-pol) and 10.7 GHz (H-pol) shows the strongest relation with simulated lake ice thickness over the period of study (R**2 > 0.90). A comparison of the seasonal evolution of T(B) for a cold winter (2003-2004) and a warm winter (2005-2006) reveals that the relationship between T(B) and ice growth is stronger in the cold winter (2003-2004). Overall, this letter shows the high sensitivity of T(B) to ice growth and, thus, the potential of AMSR-E mid-frequency channels to estimate ice thickness on large northern lakes.
Resumo:
We report a near-continuous, stable isotopic record for the Pliocene-Pleistocene (4.8 to 0.8 Ma) from Ocean Drilling Program Site 704 in the sub-Antarctic South Atlantic (47°S, 7°E). During the early to middle Pliocene (4.8 to 3.2 Ma), variation in delta18O was less than ~0.5 per mil, and absolute values were generally less than those of the Holocene. These results indicate some warming and minor deglaciation of Antarctica during intervals of the Pliocene but are inconsistent with scenarios calling for major warming and deglaciation of the Antarctic ice sheet. The climate System operated within relatively narrow limits prior to ~3.2 Ma, and the Antarctic cryosphere probably did not fluctuate on a large scale until the late Pliocene. Benthic oxygen isotopic values exceeded 3 per mil for the first time at 3.16 Ma. The amplitude and mean of the delta18O signal increased at 2.7 Ma, suggesting a shift in climate mode during the latest Gauss. The greatest delta18O values of the Gaus anti Gilbert chrons occurred at ~2.6 Ma, just below a hiatus that removed the interval from ~2.6 to 2.3 Ma in Site 704. These results agree with those from Subantarctic Site 514, which suggest that the latest Gauss (2.68 to 2.47 Ma) was the time of greatest change in Neogene climate in the northern Antarctic and Subanthtic regions. During this period, surface water cooled as the Polar Front Zone (PFZ) migrated north and perennial sea ice Cover expanded into the Subantarctic region. Antarctic ice volume increased and the ventilation rate of Southern Ocean deep water decreased during glacial events after 2.7 Ma. We suggest that these changes in the Southern Ocean were related to a gradual lowering of sea level and a reduction in the flux of North Atlantic Deep Water (NADW) with the Initiation of ice growth in the northern hemisphere. The early Matuyama Chron (~ 2.3 to 1.7 Ma) was marked by relatively warm climates in the Southern Ocean except for strong glacial events associated with isotopic stages 82 (2.027 Ma), 78 (1.941 Ma), and 70 (1.782 Ma). At 1.67 Ma (stage 65/64 transition), surface waters cooled as the PFZ migrated equatorward and oscillated about a far northerly position for a prolonged interval between 1.67 and 1.5 Ma (stages 65 to 57). Beginning at ~1.42 Ma (stage 52), all parameters (delta18O, delta13C, %opal, %CaCO3) in Hole 704 become highly correlated with each other and display a very strong 41-kyr cyclicity. This increase in the importance of the 41-kyr cycle is attributed to an increase in the amplitude of the Earth's obliquity cycle that was likely reinforced by increased glacial suppression of NADW, which may explain the tightly coupled response that developed between the Southern Ocean and the North Atlantic beginning at ~1.42 Ma (stage 52).
Resumo:
We studied the stable isotopic and carbonate stratigraphy of ODP Hole 704A to reconstruct the paleoceanographic evolution of the eastern subantarctic sector of the South Atlantic Ocean. Site 704 is well positioned with respect to latitude (46°52.8'S, 7°25.3'E) and bathymetry (2532 m) to monitor past migrations in the position of Polar Front Zone (PFZ) and changes in deep-water circulation during the late Pliocene-Pleistocene. Several important changes occurred in proxy paleoceanographic indicators across the Gauss/Matuyama boundary at 2.47 Ma: (1) accumulation rates of biogenic sedimentary components increased by an order of magnitude (Froelich et al., this volume); (2) planktonic d1 8O values increased by an average of 0.5 per mil; (3) the amplitude of the benthic d18O signal increased; (4) the accumulation rate of ice-rafted detritus increased several fold (Warnke and Allen, this volume); and (5) carbon isotopic ratios of benthic foraminifers decreased by 0.5 per mil, as did the d13C of the fine-fraction carbonate by 1.5 per mil (Mead et al., 1991, doi:10.2973/odp.proc.sr.114.152.1991), but no change occurred in planktonic foraminiferal d13C values. Most of these changes are consistent with more frequent expansions and contractions of the PFZ over Site 704 after 2.47 Ma, bringing cold, nutrient-rich waters to 47°S that stimulated both carbonate and siliceous productivity. The synchronous increase in d18O values and ice-rafted detritus accumulation in Hole 704A indicates that the 2.4 Ma paleoceanographic event included ice volume growth on both Antarctica and Northern Hemisphere continents. The decrease in benthic d13C values indicates that the ventilation rate of Southern Ocean deep water decreased and the nutrient content increased during glacial events after 2.5 Ma. At the Gauss/Matuyama boundary, benthic d13C values of the Southern Ocean shifted toward those of the Pacific end member, indicating a decrease in the relative mixing ratio of Northern Component Water and Circumpolar Deep Water. During the early Matuyama (~2.3 to 1.7 Ma), the PFZ generally occupied a southerly position with respect to Site 704 and carbonate productivity prevailed. Exceptions to these general conditions occurred during strong glacial events of the early Matuyama (e.g., isotopic stages 82, 78, 74, and 70), when the PFZ migrated to the north and opal sedimentation predominated at Site 704. At 1.7 Ma, the PFZ migrated toward the equator and occupied a more northerly position for a prolonged interval between ~1.7 and 1.5 Ma. Beginning at ~1.5-1.4 Ma, surface and bottom water parameters (d18O, d13C, %CaCO3, and %opal) in the subantarctic South Atlantic became highly correlated such that glacial events (d18O maxima) corresponded to d13C and carbonate minima and opal maxima. This pattern is typical of the correlation found during the latest Pleistocene in the Southern Ocean (Charles and Fairbanks, in press). This event coincided with increased suppression of Northern Component Water during glacial events after 1.5 Ma (Raymo et al., 1990, doi:10.1016/0012-821X(90)90051-X), which may have influenced the climatology of the Southern Hemisphere by altering the flux of heat and salt to the Southern Ocean).
Resumo:
Dead and dying glaucous gulls (Larus hyperboreus) were collected on Bjornoya in the Barents Sea in 2003, 2004 and 2005. Autopsies of the seabirds only explained a clear cause of death for three (14%) of the 21 birds. A total of 71% of the birds were emaciated. Liver and brain samples were analysed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ether (PBDEs), hexabromo-cyclododecanes (HBCDs) and mercury (Hg). High levels of OCPs, PCBs, PBDEs and alpha-HBCD were found in liver and brain. Compared to the dead and dying glaucous gulls found 1989, the congeners' composition tended to change toward more persistent compounds in the 2003-2005 samples. The brain levels of OCPs and PCBs did not differ between 1989 and 2003-2005, while the liver levels were significantly lower. The brain/liver ratio for PCB and PBDE significantly decreased with halogenations of the molecule, indicating a clear discrimination of highly halogenated PCBs and PBDEs entering the brain. There was further a clear negative correlation between contaminant concentrations and body condition. The brain levels were not as high as earlier published lethal levels of p,p'-DDE or PCB. However, more recent studies reported a range of sub-lethal OCP- and PCB-related effects in randomly sampled glaucous gulls. An additional elevation of pollutants due to emaciation may increase the stress of the already affected birds. The high brain levels of OCP, PCB and PBDE of present study might therefore have contributed to the death of weakened individuals of glaucous gull.