994 resultados para 019900 OTHER MATHEMATICAL SCIENCES
Resumo:
The idealised theory for the quasi-static flow of granular materials which satisfy the Coulomb-Mohr hypothesis is considered. This theory arises in the limit that the angle of internal friction approaches $\pi/2$, and accordingly these materials may be referred to as being `highly frictional'. In this limit, the stress field for both two-dimensional and axially symmetric flows may be formulated in terms of a single nonlinear second order partial differential equation for the stress angle. To obtain an accompanying velocity field, a flow rule must be employed. Assuming the non-dilatant double-shearing flow rule, a further partial differential equation may be derived in each case, this time for the streamfunction. Using Lie symmetry methods, a complete set of group-invariant solutions is derived for both systems, and through this process new exact solutions are constructed. Only a limited number of exact solutions for gravity driven granular flows are known, so these results are potentially important in many practical applications. The problem of mass flow through a two-dimensional wedge hopper is examined as an illustration.
Resumo:
The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb–Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.
Resumo:
This paper is concerned with some plane strain and axially symmetric free surface problems which arise in the study of static granular solids that satisfy the Coulomb-Mohr yield condition. Such problems are inherently nonlinear, and hence difficult to attack analytically. Given a Coulomb friction condition holds on a solid boundary, it is shown that the angle a free surface is allowed to attach to the boundary is dependent only on the angle of wall friction, assuming the stresses are all continuous at the attachment point, and assuming also that the coefficient of cohesion is nonzero. As a model problem, the formation of stable cohesive arches in hoppers is considered. This undesirable phenomena is an obstacle to flow, and occurs when the hopper outlet is too small. Typically, engineers are concerned with predicting the critical outlet size for a given hopper and granular solid, so that for hoppers with outlets larger than this critical value, arching cannot occur. This is a topic of considerable practical interest, with most accepted engineering methods being conservative in nature. Here, the governing equations in two limiting cases (small cohesion and high angle of internal friction) are considered directly. No information on the critical outlet size is found; however solutions for the shape of the free boundary (the arch) are presented, for both plane and axially symmetric geometries.
Resumo:
Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45 degree.
Resumo:
Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.
Resumo:
This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.
Resumo:
The two-dimensional free surface flow of a finite-depth fluid into a horizontal slot is considered. For this study, the effects of viscosity and gravity are ignored. A generalised Schwarz-Christoffel mapping is used to formulate the problem in terms of a linear integral equation, which is solved exactly with the use of a Fourier transform. The resulting free surface profile is given explicitly in closed-form.
Resumo:
The free surface flow of a finite depth fluid past a semi-infinite body is considered. The fluid is assumed to have constant vorticity throughout and the free surface is assumed to attach smoothly to the front face of the body. Numerical solutions are found using a boundary integral method in the physical plane and it is shown that solutions exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Vorticity is included in the flow and it is shown that the behaviour of the solutions is qualitatively the same as that found in the problem described above.
Resumo:
From 19 authoritative lists with 164 entries of ‘endangered’ Australian mammal species, 39 species have been reported as extinct. When examined in the light of field conditions, the 18 of these species thought to be from Queensland consist of (a) species described from fragmentary museum material collected in the earliest days of exploration, (b) populations inferred to exist in Queensland by extrapolation from distribution records in neighbouring States or countries, (c) inhabitants of remote and harsh locations where search effort is extraordinarily difficult (especially in circumstances of drought or flooding). and/or (d) individuals that are clearly transitory or peripheral in distribution. ‘Rediscovery’ of such scarce species - a not infrequent occurrence - is nowadays attracting increasing attention. Management in respect of any scarce wildlife in Queensland presently derives from such official lists. The analyses here indicate that this method of prioritizing action needs review. This is especially so because action then tends to be centred on species chosen out of the lists for populist reasons and that mostly addresses Crown lands. There is reason to believe that the preferred management may lie private lands where casual observation has provided for rediscovery and where management is most desirable and practicable.
Resumo:
The process of offsetting land against unavoidable disturbance of development sites in Queensland will benefit from a method that allows the best possible selection to be made of alternative lands. With site selection now advocated through a combination of Regional Ecosystem and Land Capability classifications state-wide, a case study has determined methods of assessing the functional lift – that is, measures of net environmental gain – of such action. Outcomes with potentially high functional lift are determined, that offer promise not only for endangered ecosystems but also for managing adjacent conservation reserves.
Resumo:
Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms by using indirect inference. ABC methods are useful for posterior inference in the presence of an intractable likelihood function. In the indirect inference approach to ABC the parameters of an auxiliary model fitted to the data become the summary statistics. Although applicable to any ABC technique, we embed this approach within a sequential Monte Carlo algorithm that is completely adaptive and requires very little tuning. This methodological development was motivated by an application involving data on macroparasite population evolution modelled by a trivariate stochastic process for which there is no tractable likelihood function. The auxiliary model here is based on a beta–binomial distribution. The main objective of the analysis is to determine which parameters of the stochastic model are estimable from the observed data on mature parasite worms.
Resumo:
We assess the performance of an exponential integrator for advancing stiff, semidiscrete formulations of the unsaturated Richards equation in time. The scheme is of second order and explicit in nature but requires the action of the matrix function φ(A) where φ(z) = [exp(z) - 1]/z on a suitability defined vector v at each time step. When the matrix A is large and sparse, φ(A)v can be approximated by Krylov subspace methods that require only matrix-vector products with A. We prove that despite the use of this approximation the scheme remains second order. Furthermore, we provide a practical variable-stepsize implementation of the integrator by deriving an estimate of the local error that requires only a single additional function evaluation. Numerical experiments performed on two-dimensional test problems demonstrate that this implementation outperforms second-order, variable-stepsize implementations of the backward differentiation formulae.
Resumo:
Plant biosecurity requires statistical tools to interpret field surveillance data in order to manage pest incursions that threaten crop production and trade. Ultimately, management decisions need to be based on the probability that an area is infested or free of a pest. Current informal approaches to delimiting pest extent rely upon expert ecological interpretation of presence / absence data over space and time. Hierarchical Bayesian models provide a cohesive statistical framework that can formally integrate the available information on both pest ecology and data. The overarching method involves constructing an observation model for the surveillance data, conditional on the hidden extent of the pest and uncertain detection sensitivity. The extent of the pest is then modelled as a dynamic invasion process that includes uncertainty in ecological parameters. Modelling approaches to assimilate this information are explored through case studies on spiralling whitefly, Aleurodicus dispersus and red banded mango caterpillar, Deanolis sublimbalis. Markov chain Monte Carlo simulation is used to estimate the probable extent of pests, given the observation and process model conditioned by surveillance data. Statistical methods, based on time-to-event models, are developed to apply hierarchical Bayesian models to early detection programs and to demonstrate area freedom from pests. The value of early detection surveillance programs is demonstrated through an application to interpret surveillance data for exotic plant pests with uncertain spread rates. The model suggests that typical early detection programs provide a moderate reduction in the probability of an area being infested but a dramatic reduction in the expected area of incursions at a given time. Estimates of spiralling whitefly extent are examined at local, district and state-wide scales. The local model estimates the rate of natural spread and the influence of host architecture, host suitability and inspector efficiency. These parameter estimates can support the development of robust surveillance programs. Hierarchical Bayesian models for the human-mediated spread of spiralling whitefly are developed for the colonisation of discrete cells connected by a modified gravity model. By estimating dispersal parameters, the model can be used to predict the extent of the pest over time. An extended model predicts the climate restricted distribution of the pest in Queensland. These novel human-mediated movement models are well suited to demonstrating area freedom at coarse spatio-temporal scales. At finer scales, and in the presence of ecological complexity, exploratory models are developed to investigate the capacity for surveillance information to estimate the extent of red banded mango caterpillar. It is apparent that excessive uncertainty about observation and ecological parameters can impose limits on inference at the scales required for effective management of response programs. The thesis contributes novel statistical approaches to estimating the extent of pests and develops applications to assist decision-making across a range of plant biosecurity surveillance activities. Hierarchical Bayesian modelling is demonstrated as both a useful analytical tool for estimating pest extent and a natural investigative paradigm for developing and focussing biosecurity programs.