998 resultados para 010200 APPLIED MATHEMATICS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a large scale network of interconnected heterogeneous dynamical components. Scalable stability conditions are derived that involve the input/output properties of individual subsystems and the interconnection matrix. The analysis is based on the Davis-Wielandt shell, a higher dimensional version of the numerical range with important convexity properties. This can be used to allow heterogeneity in the agent dynamics while relaxing normality and symmetry assumptions on the interconnection matrix. The results include small gain and passivity approaches as special cases, with the three dimensional shell shown to be inherently connected with corresponding graph separation arguments. © 2012 Society for Industrial and Applied Mathematics.